Differential Geometry I
Differential geometry studies local and global properties of curved spaces.
Topics of the lecture will be:
- Curves and surfaces in Euclidean space
- Metrics and (Riemannian) manifolds
- Surface tension and notions of curvature
- Vector fields, tensors, covariant derivative
- Geodesic curves, exponential map
- Gauß-Bonnet theorem, curvature and topology
- Connection to discrete differential geometry
Prerequisits: Analysis I, II and Linear Algebra I, II
(19202601)
| Type | Lecture with exercise session |
|---|---|
| Instructor | Prof. Dr. Konrad Polthier, Dr. Tillmann Kleiner |
| Language | English |
| Credit Points | 10 |
| Start | Oct 15, 2025 | 10:15 AM |
| end | Feb 11, 2026 | 11:45 AM |
| Time |
|
Info Sheet on the Tutorials:
- Info Sheet (last updated: 22.10.2025, 9:15)
Exercise Sheets:
- Sheet 1 (last updated: 21.11.2025)
- Sheet 2 (last updated: 21.11.2025)
- Sheet 3 (last updated: 21.11.2025)
- Sheet 4 (last updated: 21.11.2025)
- Sheet 5 (last updated: 27.11.2025)
- Sheet 6 (last updated: 27.11.2025)
- Sheet 7
Lecture Notes:
