Exercise Sheet 7

Version 1, Published: 1.12.2025

Submission: 8.12.2025, 8:30 AM (start of the tutorial) or 10:15 AM (start of the lecture)

Exercise 1. (4 points)

Describe the initial value problem for geodesics on a torus

$$f: (u, v) \mapsto (\cos(u)(R + r\cos(v)), \sin(u)(R + r\cos(v)), r\sin(v)), \quad 0 < r < R.$$
 (1)

Use the differential equations to verify that the following curves on the torus are geodesics:

- i) $t \mapsto f(u_0, t)$ for a constant u_0 ;
- ii) $t \mapsto f(t,0)$;
- iii) $t \mapsto f(t, \pi)$.

Exercise 2. (4 points)

Prove the following statements:

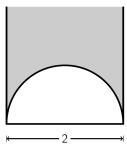
- i) Let X_1 and X_2 denote the principal curvature directions on a surface at a given point and assume that the corresponding curvatures are not equal, i.e. $\kappa_1 \neq \kappa_2$. Then X_1 and X_2 are orthogonal.
- ii) There is no asymptotic line passing through an elliptic point¹.

Exercise 3. (4 points)

Let $r(t) = e^t$ and $h(t) = \int_0^t \sqrt{1 - e^{2x}} dx$. The resulting surface of revolution is called a *pseudosphere*. Determine the asymptotic lines and the curvature lines for the pseudosphere. Show that the asymptotic lines approach the limit circle (t = 0) tangentially for $t \to 0$.

Exercise 4. (4 points)

The hyperbolic space of dimension 2 can be modeled via the upper half plane $\mathbb{H}^2 = \{(u,v) \in \mathbb{R}^2 \mid v > 0\}$ equipped with the metric $g(u,v) = \frac{1}{v^2}I_2$, with I_2 the identity matrix of dimension 2. Consider the following geodesic triangle² in \mathbb{H}^2 whose vertices are lying all at infinity:



Determine its area by integration.

¹Such a point has Gaussian curvature larger zero.

²The triangle is given by the part colored in gray.