

Exercise Sheet 10

Version 1, Published: 7.1.2026

Submission: 12.1.2026, 8:30 AM (start of the tutorial) or 10:15 AM (start of the lecture)

Exercise 1.

(4 points)

Let F and G be the functions from the Weierstraß-Enneper presentation of a conformally parametrized minimal surface f . Recall, that the inverse of the stereographic projection

$$\text{st}_2: \mathbb{S}^2 \setminus \{(1, 0, 0)\} \rightarrow \mathbb{R}^2, \quad (x, y, z) \mapsto \frac{(x, y)}{1 - z} \quad (1)$$

is given by

$$\text{st}_2^{-1}: (x, y) \mapsto \frac{(2x, 2y, x^2 + y^2 - 1)}{x^2 + y^2 + 1}. \quad (2)$$

Prove, that the inverse stereographic projection of G , that is, the vector field

$$N := \text{st}_2^{-1}(G) = \begin{pmatrix} 2 \operatorname{Re} G \\ 2 \operatorname{Im} G \\ G\bar{G} - 1 \end{pmatrix} \frac{1}{G\bar{G} + 1}, \quad (3)$$

defines a normal field for the surface $f(\Omega)$.¹

Exercise 2.

(8 points)

Consider the vector function $\Phi: \mathbb{C} \rightarrow \mathbb{C}^3$ with holomorphic entries given by

$$\Phi(z) := \begin{pmatrix} \varphi_1(z) \\ \varphi_2(z) \\ \varphi_3(z) \end{pmatrix} = \begin{pmatrix} -i \sinh(z) \\ -\cosh(z) \\ -i \end{pmatrix}. \quad (4)$$

i) Determine the surface parametrization defined by

$$f(u, v) = \operatorname{Re} \int_0^{z=u+iv} \Phi(\xi) d\xi. \quad (5)$$

ii) Prove, that f is a regular parametrization of a minimal surface.

iii) Verify that the parametrization f is conformal.

iv) Determine the functions F and G from the Weierstraß-Enneper presentation of f .

v) Calculate the Gauss map (= the normal field) $N: \mathbb{R}^2 \rightarrow \mathbb{S}^2$ from the function G , using Eq. (3).

vi) Sketch the surface parametrized by f and the normal field N .

Exercise 3.

(4 points)

Let $f: \Omega \rightarrow \mathbb{R}^3$ and $\tilde{f}: \tilde{\Omega} \rightarrow \mathbb{R}^3$ be a regular surface parametrization with the corresponding Gauss maps (= normal fields) $N: \Omega \rightarrow \mathbb{S}^2$ and $\tilde{N}: \tilde{\Omega} \rightarrow \mathbb{S}^2$ defined by the usual cross product formula. Let $\varphi: \Omega \rightarrow \tilde{\Omega}$ be diffeomorphic such that $f = \tilde{f} \circ \varphi$. Prove that the relation

$$N = (\tilde{N} \circ \varphi) \cdot \operatorname{sign}(\det D\varphi) \quad (6)$$

holds, where $D\varphi$ is the differential of φ .

¹Here $\operatorname{Re} z = x$, $\operatorname{Im} z = y$ resp. $\bar{z} = x - iy$ denote the real part, the imaginary part resp. the complex conjugate of a complex number $z = x + iy \in \mathbb{C}$.