Scientific Visualization

Einführung in die Grundlagen der wissenschaftlichen Visualisierung und ihre Anwendungen in der Mathematik, Computergraphik und Naturwissenschaften.

  • Grundlegende Datenstrukturen
  • Flächentheorie von diskreten Gittern
  • Visualisierungsverfahren, Animationen
  • Subdivision, Wavelets, Hodge-Zerlegung
  • 3D-Scanning, 3D-Druck, Flächenmodellierung
  • Software und Anwendungsbeispiele.


Übungen: Es werden 2-stündige Übungen angeboten, in denen Studenten die in der Vorlesung erworbenen Kenntnisse an konkreten Fallbeispielen anwenden sollen and das praktische Arbeiten mit Visualisierungssoftware erlernen sollen.

Scheinkriterium ist der erfolgreiche Abschluss eines Visualisierungsprojekts, die regelmäßige Teilnahme an den Tutorien sowie 60% der maximal erreichbaren Punkte in den Übungsaufgaben.

(19058)

Extended deadline for final submission: *Friday April 29th!* Check the info email!

Type

Lecture

Instructor

Prof. Dr. Konrad Polthier, Konstantin Poelke, Thomas Gust

Language

English

Room

Arnimallee 6

Lecture: SR 025/026 (Mon), SR031 (Wed) *** Tutorials: SR031 (Mon), SR032 (Wed) ***Final Presentations: SR032

Time

Lecture: Mo 12:00-14:00, Mi 12:00-14:00

Tutorials: Mo, 16:00 - 18:00 Uhr, Mi, 16:00 - 18:00 Uhr (start on Monday, 19.10.)

Send project wish-list (three projects) to Thomas & Konstantin until 28.10.15

Short project presentation: 07.12.15

Final presentations: Thursday, April 14, 9:00-16:30

Submission deadline: 29.04.16

Files to be submitted:

  • written documentation as PDF
  • revised presentation slides as PDF
  • revised project files, including sources (code, maya files,...)

Start

Oct 12, 2015 | 12:00 PM — Feb 10, 2016 | 02:00 PM

Requirements

Bachelorabschluss in Mathematik oder Informatik

Literature

Additional reading and supplement for lectures and tutorials:

  • M. de Berg, M. Kreveld et al.: "Computational Geometry", Springer Verlag, 2008.
    Classical algorithms for computational geometry, space partitioning, kd-tree structures, triangulations
  • H.C. Hege and K. Polthier: "Visualization and Mathematics III", Springer Verlag 2003.
    Collection of seminal research articles on conformal mappings, discrete differential operators on triangle meshes, discrete vector fields, 
  • D. Salomon: "The Computer Graphics Manual", Springer, 2011
    Heavy allrounder (almost 1500 pages), contains sections about subdivision, colors, texture mappings, raster graphics, Beziér splines, rendering, fractals, wavelets, compression, with very digestible math
  • E. Stollnitz, T. DeRose, D. Salesin: "Wavelets for Computer Graphics", Morgan Kaufmann Publisher 1996.
    Classical introductory book on wavelets, image compression, subdivision
  • H. Schumann, W. Müller: "Visualisierung - Grundlagen und allgemeine Methoden", Springer Verlag 2000.
  • W. Schroeder, K. Martin, B. Lorensen: "The Visualization Toolkit" Prentice Hall, 1998/2004.
    Outdated reference for the VTK library, covers a wide variety of aspects on visualisation with VTK
  • D. Cohen-Or, C. Greif et al.: "A Sampler of Useful Computational Tools for Applied Geometry,(...)", Taylor & Francis, 2015
  • M. Botsch et al.: "Polygon Mesh Processing", A K Peters, 2010
    Important aspects of modern geometry processing, data structures, smoothing, parametrization, simplification, deformation
  • T. K. Dey: "Curve and Surface Reconstruction", Cambridge Univ. Press, 2011
  • H. Edelsbrunner: "Geometry and Topology for Mesh Generation", Cambridge Univ. Press, 2006
    Triangulation methods, Delaunay triangulation, topological and combinatorial aspects

Useful Software:

  • JavaView: http://javaview.de/
    Visualization software and library, provides implementations of many geometric algorithms