Differential Geometry I
This is the website of a course in the past. See here for the current course.
Differential geometry studies the local and global properties of curved spaces.
Topics of the lecture will be:
* curves and surfaces in Euclidean space,
* (Riemannian) manifolds,
* vector bundles, especially the tangent bundle,
* tensors,
* curvature tensors,
* submanifolds,
* geodesics,
* and some theorems from global differential geometry.

(19044)
| Type | Lecture |
|---|---|
| Instructor | Prof. Dr. Konrad Polthier |
| Language | German |
| Room | Arnimallee 6 SR 032 (Lecture), SR 009/A6 (Tutorial A), SR 006/T9 (Tutorial B) |
| Start | Oct 13, 2014 | 12:00 PM |
| end | Feb 11, 2015 | 06:00 PM |
| Time | * Lecture: Mo + Mi 12 - 14 Uhr * Tutorials (starting October 15th!):
* Exam: Wednesday, 04.02., 12-14h, SR032 * Repeat Exam: Monday, 30.03., 12-14h, SR032 |
Requirements
Analysis I-III,
Linear Algebra I & II
Literature
- W. Kühnel: Differentialgeometrie:Kurven - Flächen - Mannigfaltigkeiten, Springer, 2012
- M. P. doCarmo, Differential Geometry of Curves and Surfaces, Prentice Hall
- J.-H. Eschenburg, J. Jost: Differentialgeometrie und Minimalflächen, Springer, 2014
- Ch. Bär: Elementare Differentialgeometrie, de Gruyter, 2001
