Bahareh Banyassady:

The Limited Workspace Model for Geometric Algorithms

Kurzbeschreibung

Space usage has been a concern since the very early days of algorithm design. The increased availability of devices with limited memory or power supply – such as smartphones, drones, or small sensors – as well as the proliferation of new storage media for which write access is comparatively slow and may have negative effects on the lifetime – such as flash drives – have led to renewed interest in the subject. As a result, the design of algorithms for the limited workspace model has seen a significant rise in popularity in computational geometry over the last decade. In this setting, we typically have a large amount of data that needs to be processed. Although we may access the data in any way and as often as we like, write-access to the main storage is limited and/or slow. Thus, we opt to use only higher level memory for intermediate data (e.g., CPU registers). Since the application areas of the devices mentioned above – sensors, smartphones, and drones – often handle a large amount of geographic (i.e., geometric) data, the scenario becomes particularly interesting from the viewpoint of computational geometry. Motivated by these considerations, we investigate geometric problems in the limited workspace model. In this model the input of size n resides in read-only memory, an algorithm may use a workspace of size s = {1, . . . , n} to read and write the intermediate data during its execution, and it reports the output to a write-only stream. The goal is to design algorithms whose running time decreases as s increases, which provides a time-space trade-off. In this thesis, we consider three fundamental geometric problems, namely, computing different types of Voronoi diagrams of a planar point set, computing the Euclidean minimum spanning tree of a planar point set, and computing the k-visibility region of a point inside a polygonal domain. Using several innovative techniques, we either achieve the first time-space trade-offs for those problems or improve the previous results.

Abschluss
PhD
Abgabedatum
26.04.2019
Homepage des Autors