Springe direkt zu Inhalt

Forschungsmodul: Topologie "Spectral sequences"

Winter Term 2018/2019

Lecturer:  Prof. Dr. Holger Reich, Prof. Dr. Elmar Vogt


  • Time and Place:  Tuesday, 14:00-16:00 h, Arnimallee 7, SR 140 (HH)


Content: 

Spectral sequences are powerful tools that allow computations in algebraic topology and many other areas of mathematics. In this seminar we want to learn the basics about spectral sequences and see them in action. Our main examples will be the Leray-Serre spectral sequence and the Adams spectral sequence. Both lead to concrete calculations of homotopy groups of spheres, one of the most important problems in topology.

In case you are interested please write us an email and come to the preliminary discussion.

Talks

DateTitleSpeaker
16.10.       Preliminary Discussion Holger Reich / 
Elmar Vogt
25.10.      Discussion Holger Reich / 
Elmar Vogt
30.10.  1. What is a spectral sequence?  All
06.11.  2. What is a spectral sequence?  All
13.11.  3. Applications of the Leray-Serre spectral sequence I  David Dodelson
20.11.  4. Applications of the Leray-Serre spectral sequence II  Evgeniya Lagoda
27.11.  5. Applications of the Leray-Serre spectral sequence II (Fortsetzung)  Evgeniya Lagoda
04.12.  6. Applications of the Leray-Serre spectral sequence III  Alexander Müller
11.12.  7. Applications of the Leray-Serre spectral sequence IV  Jonathan Kliem
2019     
08.01.  8. Constructing spectral sequences  Holger Reich
15.01.  9. The Steenrod Algebra  Georg Lehner
22.01.  10. The Adams spectral sequence I  Lars Ran
29.01.  11. The Adams spectral sequence II  Alexander Müller
12.02.  12. The Adams Vanishing Theorem  Elmar Vogt

Literature:

John McCleary: A User's Guide to Spectral Sequences