Berliner Colloquium für Wissenschaftliche Visualisierung


Adam Finkelstein: Photo Manipulation Tools for Everyone

2016-05-02, ZIB (Hörsaal): Taking pictures is easy, but editing them is not. In 2012 Facebook reported that people were uploading photos at a rate of more than 10 million per hour. The overwhelming majority of these pictures are casual - they effectively chronicle a moment, but without much work on the part of the photographer. In contrast, professional artists and designers expend great care and effort in pursuit of composing and editing aesthetically-pleasing, impactful imagery. Commercial and research software offers a powerful array of tools for manipulating photos. Some of these tools are easy to understand but offer a limited range of expressiveness. Other more expressive tools are time consuming for experts and inscrutable to novices. I will describe several methods designed to make photo manipulation easier for everyone. [...]


Ingrid Hotz: Visualizing line-like features – Cleaning up the mess

2016-04-18, ZIB (Hörsaal): One of the major challenges in scientific visualization is to deal with the huge amount of information contained in scientific data. A typical concept in visualization refers to the notion of dominant or important features as basis for the visualization. However, there is often still a high feature density overwhelming the user and unfortunately there doesn’t exist a silver bullet to solve this challenge for all cases. Solutions must be found in close collaboration with the domain experts generating the data specifically targeted to their needs. Though there are tools and concepts that can be adapted to many applications. [...]


Pierre Alliez: Isotopic Approximation within a Tolerance Volume

2016-02-09, ZIB (Hörsaal): In this talk I will discuss an algorithm that generates a surface triangle mesh from an input tolerance volume. The mesh is guaranteed to be within the tolerance, intersection free and topologically correct. A pliant meshing algorithm is used to capture the topology then discover the anisotropy in the input tolerance volume in order to generate a concise output. We first refine a 3D Delaunay triangulation over the tolerance volume while maintaining a piecewise-linear function on this triangulation, until an isosurface of this function matches the topology sought after. [...]


Claudia Lindner, PhD: BoneFinder: Automated Bone Shape and Appearance Analysis in 2D Radiographs

2015/11/02, ZIB (Hörsaal): This talk will describe new technology to automatically annotate skeletal structures in radiographic images, aiming to rapidly transform image data into useful medical information. Musculoskeletal diseases affect millions of people globally, posing a major cost to healthcare systems worldwide. In clinical practise and research into musculoskeletal diseases, 2D X-ray images are the imaging modality of choice due to wide availability, speed of acquisition and low cost. [...]


Prof. Zbyněk Šír.: Curves and Surfaces with Rational Geometric Properties

2015/05/26, ZIB (Hörsaal): This talk will be devoted to the study of rational geometric objects possessing special rational properties. In particular, we focus on rational curves and surfaces with rational offsets, rational curvature functions, rational convolutions with other objects, rational normal fields and frames. In the univariate case, we also study curves with polynomial or rational speed, which are traditionally called Pythagorean hodograph curves. In the bivariate case, we investigate surfaces with rational area element which are called, by analogy, Pythagorean hodograph surfaces.


Prof. Timo Ropinski: Visualization to Support Minimally Invasive Surgery

2014/06/23, ZIB (Hörsaal): Modern medical imaging techniques enable to acquire patient-related data with unprecedented accuracy. Both anatomical and functional data are acquired that provide, for example, information about brain function. The high temporal resolution of modern CT scanners allows to acquire even dynamic data. While the data obtained are often used in diagnosis, also minimally heavily. In such procedures, the surgeons often have only limited possibilities to get an overview of the surgical site and to orient themselves – which strengthens the role of visualization techniques. [...]


Professor Vijay Natarajan: Symmetry in Scalar Fields

2014/04/28, ZIB (Hörsaal): Several natural and man-made objects exhibit symmetry in different forms, both in their geometry and in the material distribution. The study of symmetry plays an important role in understanding both the structure of these objects and their physical properties. The notion of symmetry with respect to the geometry of an object or domain is well understood. In this talk, I will introduce the problem of symmetry detection in a scalar field, a real-valued function defined on a spatial domain of interest. [...]


Georges-Pierre Bonneau, Prof.: Topology and Perception for the Visualization of Complex Scalar Data

2014/03/20, ZIB (Hörsaal): Despite many great advances in visualization research, we are still far from being able to intuitively convey the behavior of complex scalar data through images. Part of the solution resides in developing theoretical and computing tools to extract and display meaningful features. It is equally crucial to take into account the strengths and the limitations of the human visual perception to derive efficient visualizations. This talk will describe several works we have been conducted in these two complementary directions.


Masato Wakayama, Prof.: An application of Lie theory to computer graphics via spherical harmonics

2014/02/28, ZIB (Hörsaal): In this talk, we first provide a group theoretical background of spherical harmonics, and using this, we propose a possible geometry preserving algebraic framework, which might slightly accelerate the (numerical and exact) computations for spherical harmonic lighting.


Andreas Fabri, PhD: CGAL - The Computational Geometry Algorithms Library

2014/02/17, ZIB (Seminarraum): CGAL - The Computational Geometry Algorithms Library The CGAL C++ library, developed by the CGAL Open Source Project, offers geometric data structures and algorithms that are reliable, efficient, easy to use, and easy to integrate in existing software. [...]


Prof. Michael Bronstein: How much information do we need to find correspondence between nonrigid shapes?

2013/05/06, ZIB (Hörsaal): In the first part of the talk, I will present a novel sparse modeling approach to nonrigid shape matching using only the ability to detect repeatable regions. As the input to our algorithm, we are given only two sets of regions in two shapes; no descriptors are provided so the correspondence between the regions is not know, nor do we known how many regions correspond in the two shapes. [...]


Prof. Iasonas Kokkinos: Computer vision as inverse graphics: efficient algorithms for model-based image understanding

2013/04/29, ZIB (Hörsaal): The model-based, analysis-by-synthesis approach has served as a rich source of ideas for computer vision. The conceptual appeal of this approach is however marred by the computational complexity of the resulting ‘inverse’ optimization problems. [...]


Guoyan Zheng, PhD, PD: 3D Personalized Reconstruction of External Shape and Internal Intensity Distribution from X-ray Images: Statistical Model-based Solutions

2012/08/06, ZIB (Hörsaal): The applications of two-dimensional (2D) X-ray imaging in orthopaedics are pervasive, both pre-operatively and intra-operatively. However, due to the projective character of 2D X-ray imaging, the accuracy of an X-ray image based application is restricted. One way to address this limitation is to learn a statistical model and to adapt the learned model to the patient’s individual anatomy based on a limited number of calibrated X-ray images. [...]


Eric Lengyel, Ph.D.: The Return of Forgotten Mathematics in Computer Graphics

2012/06/25, ZIB (Hörsaal): In the mid 1800s, Hermann Grassmann discovered an important field of mathematics that he called Extension Theory. However, his insights were largely forgotten as the vector analysis and linear algebra that we consider standard today rose to popularity. Recently, the utility of Grassmann’s theory has been rediscovered in the field of computer graphics by researchers who understand how it can unify many of the geometric operations that are used every day. [...]


Olga Sorkine, Prof. Dr.: Fast Shape Deformation using Skinning

2012/06/11, ZIB (Hörsaal): Shape deformation and editing has received much research attention in the past decade. Many works have proposed to formulate deformation as a variational problem and have achieved impressive deformation quality via nonlinear elastic energy minimization. However, usually such high deformation quality comes at a significant computational price. In this talk I will discuss a series of works that reformulate shape deformation as a skinning problem. [...]


Hans-Christian von Herrmann, Prof. Dr.; Kohei Suzuki, M.A: Weißt du, wieviel Sternlein stehen?

2012/05/07, ZIB (Hörsaal): Die Astronomie ist der Inbegriff einer klassischen Naturwissenschaft, die es mit abzählbaren, klar umrissenen Objekten zu tun hat, und ein Planetarium visualisiert dieses klassische astronomische Wissen auf perfekte Weise. Was gäbe es also weiter darüber zu sagen? Das am Fachgebiet Literaturwissenschaft der TU Berlin angesiedelte DFG-Projekt “Zeit-Bild-Raum” erforscht das 1923 in den Jenaer Zeiss-Werken erfundene Projektionsplanetarium aus kulturwissenschaftlicher Sicht. [...]


Bernd Bickel, Prof. Dr.: Human Faces - From Reality to Reality

2012/04/02, ZIB (Hörsaal): The human face plays a critical role in almost all aspects of human interaction and face-to-face communication. As such, face modeling has long been considered a grand challenge in In this talk, I will present on our recent research efforts in acquiring and modeling deformable materials, with a special focus on human faces. Furthermore, based on these tech I will talk about a data-driven process for designing the field of computer graphics. [...]