Springe direkt zu Inhalt

2020

Andreesen, Jörn: Development of an image based traffic light detection for model cars

Abschluss
Bachelor of Science (B.Sc.)
Abgabedatum
09.05.2020
Sprache
eng

For autonomous vehicles it is important to be able to detect traffic lights. This work suggests a method for the Freie Universität Berlin's AutoMiny model cars to detect traffc lights. This method uses image thresholding to find candidate regions and uses the normalized rgb colors of the candidate region to check if a traffic light was found. The evaluation shows that this method is able to reliably detect traffic lights in short distance but struggles with traffic lights further away. Also a detection in real-time is not possible with the hardware of the car.

Badran, Rima: Traffic Sign Detection for Model Cars using the Histogram of Oriented Gradients and Support Vector Machines

Abschluss
Bachelor of Science (B.Sc.)
Abgabedatum
20.02.2020
Sprache
eng

Autonomous driving has become very popular over the years. To successfully develop a car that drives by itself and more importantly follows the traffic laws, many necessary factors need to be considered. One important factor ist he detection of traffic signs in order to be able to react properly. Thus, one component of self-driving cars are traffic sign detection systems.

Such a detection system has been developed for the model cars of the research group autonomous cars using support vector machines and the histogram of oriented gradients. For training and evaluating the systems, a new dataset consisting of images, made in the robotic laboratory, has been created. In addition to the dataset, recorded rosbag files of a driving model car has been used for the evaluation.

The developed system is able to classify six traffic signs and reaches a high precision. The recall, however, needs to be improved. In order to achieve an improvement, a few adaptations have been suggested at the end.

Hein, Dennis: Traffic Light Detection with Convolutional Neural Networks and 2D Camera Data

Betreuer
Abschluss
Bachelor of Science (B.Sc.)
Abgabedatum
20.01.2020
Sprache
eng

Self-driving cars are the next step towards safe and convenient travel, but, as with all machine learning applications, require loads of training data. It would be desireable if the Freie Universität Berlin could us readily available datasets to prototype new machine learning models instead of creating their own dataset from test drives of one of their self-driving-cars.

Multiple traffic light detection models were trained on the popular datasets BSTLD and DTLD using the Tensorflow Research repository. The evaluation revealed that predictive power achieved in one dataset generally transfers over to another similar dataset with minimal loss in performance. Neither geographical differences between datasets (e.g. traffic lights at the beginning or the end of an intersection) nor architecture choices seem to impact this result. Some ideas to further reduce performance penalties are given for future work.