Machine Learning
Bayesche Verfahren der Mustererkennung, Clustering, Expectation Maximization, Neuronale Netze und Lernalgorithmen, Assoziative Netze, Rekurrente Netze. Computer-Vision mit neuronalen Netzen, Anwendungen in der Robotik.
01 - Introduction, notation, k-nearest neighbors
02 - Clustering (kMeans, DBSCAN)
03 - Linear and logistic regression
04 - Model validation
05 - The covariance matrix, PCA
06 - Bagging, decision trees, random forests
07 - Boosting (AdaBoost), Viola-Jones
08 - Perceptron, multi-layer perceptron
09 - Gradient Descent, Backprop, Optimizers (SGD, Adam, RProp)
10 - ConvNets
11 - Unsupervised representation learning I (VAEs, Glow)
12 - Unsupervised representation learning II (GANs)
13 - RNNs
14 - Attention, Transformers
15 - Attribution, Adversarial Examples
(19304201/2)
| Dozent/in | Prof. Dr. Tim Landgraf |
|---|---|
| Institution | Dahlem Center for Machine Learning and Robotics |
| Anmeldemodalität | Module zu dieser Lehrveranstaltung |
| Beginn | 15.10.2025 | 12:00 |
| Ende | 12.02.2026 | 16:00 |
| Zeit | VL 1: mittwochs, 12-14 Uhr, Gr. Hörsaal der Takustr. 9 VL 2: donnerstags, 14-16 Uhr, Gr. Hörsaal der Takustr. 9 Ü 1: montags, 14-16 Uhr, Raum 005 der Takustr. 9 Ü 2: tba (virtuell) |