Estimating Dynamics of Macromolecular Systems by Low Rank Approximation Techniques
The dynamics of a molecular system can be described by the propagation of probabilities. The project aims at estimating coarse grained models of probability densities for molecular dynamics (MD) by nonlinear projections from a high dimensional space onto a low dimensional space. Molecular processes such as protein kinetics from all-atom simulations and the like suffer from the high dimensionality of the underlying space. To overcome this, projections from the high dimensional space onto a low dimensional space have been introduced, such that the system can be described on a coarser scale by using less degrees of freedom. In the present project we apply low rank tensor approximations, to tackle the curse of dimensions. We will use Observable Operator models (OOM) to estimate the dynamics using data from short time simulation.