

IMP-IT Verzeichnisdienste

Carsten Schäuble – IT-Dienst MI

Verzeichnisdienste: Ablauf

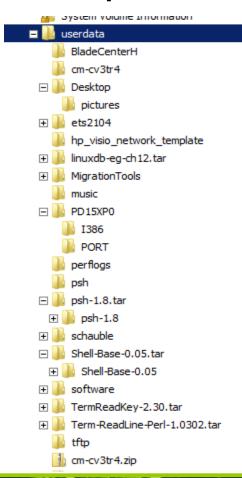
- Wozu Verzeichnisdienste?
- Welche Verzeichnisdienste gibt es?
- Zugriffsprotokolle?
- Demos von OpenIdap und Active Directory
- Beispiele von Verzeichnisdiensten
- Verwaltung von Verzeichnisdiensten

Verzeichnisdienste: Definition

- Verzeichnisdienste stellen eine zentrale Sammlung von Daten dar.
- Daten werden hierarchisch gespeichert.
- Zugriffe erfolgen zumeist nach Client-Server-Modell
- Innerhalb eines festen Protokolls
- Es können Daten und Objekte aller Art gespeichert werden, z.B. Telefondaten, Benutzerdaten für Zugangs- und Berechtigungssteuerung usw.
- Prinzipiell können alle Betriebssysteme und Dienste mit derartigem Datenbedarf angegliedert werden.

Verzeichnisdienste: Nutzung

- Authentisierung und Autorisierung von Benutzerdaten unter
 - Windows
 - Unix
 - MacOs
 - Telefonanlagen


Verzeichnisdienste: Nutzung

- Authentisierung und Autorisierung in Applikationen
 - Apache
 - Mailserver z.B. MS Exchange, Lotus Notes
 - Telefonverzeichnisse
 - -SAP
 - E-Mail Klient

Verzeichnisdienste: Einfaches Beispiel

- Dateisystem
 - ist hierarchisch über
 Verzeichnisse und Links
 - speichert Daten in beliebiger
 Form
 - Ist über Netzwerkerweiterungen voll hierarchisch erweiterbar -z.B. NFS, CIS

Verzeichnisdienste: komplexes Beispiel

- Active Directory (Demo)
 - LDAP
 - Kerberos
 - Komponenten
 - Fremdsystemintegration
 - Referral-Beispiel

Verzeichnisdienste: Beispiel Linux-PAM

- Passwd
- Group
- Automounter
- ➤ Livedemo Poolrechner

Verzeichnisdienste: Datenschutz/-sicherheit

- Gesicherte Datenübertragung bei der Autentisierung
- Übertragung schützenswerter Daten
- ACLs in Verzeichnissen
- Implementierung von Zugriffsmechanismen über Datenstrukturen in Verzeichnissen

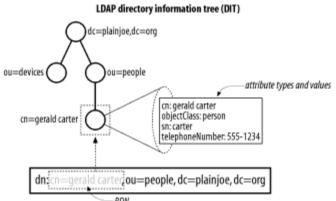
LDAP - Überblick

- Lightweight Directory Access Protocol (LDAP)
- Abfrage und Modifikation von Verzeichnisdiensten über IP-Netzwerk
- Client-server-protokoll
- RFC 4511
- Kommunikation erfolgt über Abfragen
- Vereinfachte Version von DAP als Teil von X.500

LDAP - Modelle

- Informationsmodell:
 - Beschreibt Struktur und Daten des Directory Information Trees (DIT).
 - Einträge im DIT werden als ObjektClass modelliert
 - Atrribute dieser ObjektClasses haben definierte Datentypen, Kodierungen und Operatoren

LDAP - Modelle


Namensmodell:

- Beschreibt wie Objekte im DIT eindeutig referenziert werden können.
- Auf jeder Objektebene ist ein Eintrag über ein Attribut eindeutig – relative distinguished name (RDN)

cn=carsten schauble

 Objekte haben einen global eindeutigen Pfad (DN)

cn=carsten schauble, ou=people, dc=fu-berlin, dc=de

LDAP - Modelle

Funktionales Modell

- Das LDAP Protokoll selbst.
- Beschreibt Zugriffe schreibend und lesend im DIT
- Zugriff ist implementiert über authentisierte Operationen (bindings),
 Abfragen (searches and reads) und updates (writes).

Sicherheitsmodell

- Prüft Identität eines Anfragendes (authentication) und dessen Zugriffsrechte (authorization).
- Verschiedene Protokollstufen (akt. V3) haben diverse Authentisierungsmethoden implementiert.
- ACLs sind nicht standardisiert, aber weit verbreitet.

Das LDAP-Transportformat - LDIF

- Klartextformat zum Transport und zur Veränderung von LDAP-Daten.
- Als Ansicht für LDAP-Informationen im Klartextformat besser geeignet als Binärdarstellung
- LDAP Interchange Format (LDIF), definiert in RFC 2849
 - Zusammenstellung von Einträgen, separiert durch Leerzeilen
 - Abbildung von Attribut-Namen zu -Werten
 - Zusammenstellung von direktiven für den Parser zur Anwendung der Informationen
- Import und Änderung von Daten
- Daten müssen dem Schema genügen

LDIF

```
dc=fu-berlin,dc=de:
```

LDIF listing fuer dn: dc=fu-berlin,dc=de

dn: dc=fu-berlin,dc=org

objectClass: domain

dc: plainjoe

Kommentar

:_ trennt Attribut vom Wert

Dn Attribut adressiert Eintrag eindeutig

LDIF - Normalisierung

- Entferne alle white spaces ohne escape Sequenz um =
- Entsprechende Zeichen müssen mit dem Excape-Zeichen \ versehen sein
- Alle nicht Escape-Zeichen um das RDN-Join-Zeichen + müssen weg
- Abschließende Leerzeichen müssen weg

aus:

cn=schauble + ou=it, dc=fu-berlin, dc=de
wird:
cn=schauble+ou=it, dc=fu-berlin,dc=de

LDIF: Attribute? Classes? Dc?

- Attribute beinhalten Wert(e) mit festen Typen und syntaktischen Regeln
- Attribute können mehrere Werte haben (Liste)

LDIF listing for dn: ou=devices,dc=fu-berlin,dc=de

dn: ou=devices,dc=fu-berlin,dc=de

objectclass: organizationalUnit

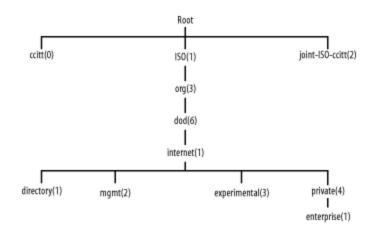
ou: devices

telephoneNumber: +49 30 838 75176

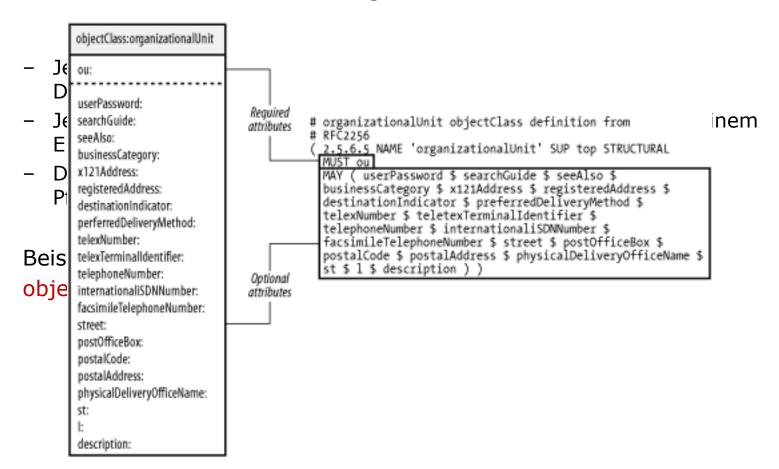
telephoneNumber: +49 30 838 75460

description: Container for all network enabled

devices existing within the fu-berlin.de domain


LDIF: Attribute? Classes? Dc?

- Attributsyntax
 - Legt fest in welchem Format Daten gespeichert werden
 - Wie Vergleiche gemacht werden
 - z.B. telephoneNumber
 - A-z, A-Z, 0-9, ", . ? Usw.


Einschub LDIF: OID

- LDAP nutzt OIDs (ähnlich dem SNMP-Standard)
- OIDs werden durch die IANA unterhalb von mgmt2 vergeben
- Ist eine Zeichenkette bestehend aus Ganzzahlen und Punkten
- OID adressiert eindeutig ein Objekt
- Bezeichnet
 - Attribute,
 - ,Syntaxen',
 - Objekt-Klassen
 - Controls

LDIF: objectClasses

LDIF: objectClasses

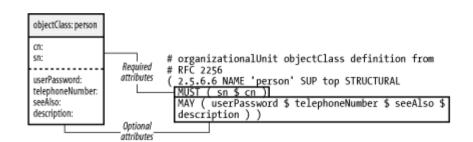
- ObjectClass besitzt eine OID wie z.B. es auch Attribut Typen, Kodierungen und Vergleichsregeln haben
- MUST gibt Pflichtattribute an,
- MAY definiert optionale Attribute
- SUP definiert das Elternobjekt (parent)
- ObjectClasses können gemeinsame Attribute haben
- Attribute sind ,flach' definiert.

LDIF: objectClasses Typen

- Structural: Reales Objekt wie person oder organisationalUnit
- Auxiliary: Fügt Charakteristika zu Objekten hinzu. Können nicht eigenständig genutzt werden.
- Abstract: OO, als abgeleitet Klasse etc.
- Typ kann nicht geändert werden

LDIF: DC

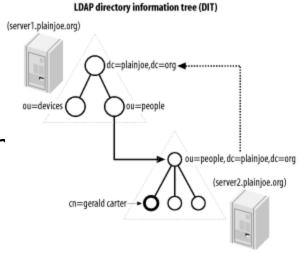
- Original wurde im X.50 Std. der Namensraum durch Geographische und nationale Bereiche aufgespannt.
 - Bsp.: X.400 dn: o=fu-berlin, l=berlin, c=germany
- Es gibt aber keine zentrale Möglichkeit, diese Namen zu registrieren!
- RFC2247 bietet die Möglichkeit, den DC auf Basis der DNS-Zone zu bilden
 -> eindeutig
- Ein DirectoryName (DN) ist der größtmögliche gemeinsame Eintrag, also z.B. dc=fu-berlin, dc=de und bestimmt, ob ein Server für eine Anfrage zuständig ist.
- Ein DomainContext (DC) ist ein Teilobjekt, welches den DN aufspannt Bsp.: dn: dc=imp,dc=fu-berlin,dc=de
- Ähnlich dem DNS antwortet ein LDAP-Server nur auf Abfragen unterhalb seines DNs


LDIF: Schema

- Das LDAP-Schema und dessen strukturelle Abkürzungen sind riesig!
 - RFC 3377 and related LDAPv3 standards (http://www.rfc-editor.org/)
 - LDAP Schema Viewer (http://ldap.akbkhome.com/)
 - Object Identifiers Registry (http://www.alvestrand.no/objectid/)
 - Sun Microsystems Product Documentation (http://docs.sun.com)

Authentication

 Direkte Kodierungen: {CRYPT},{MD5}, {SHA},{SSHA}


userPassword: {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ= =

- Bindungstypen
 - Anonymous Authentication
 - Simple Authentication
 - Simple Authentication over SSL/TLS
 - Simple Authentication and Security Layer (SASL)

Verteilte Verzeichnisse

- Verteilung zur
 - Geschwindigkeitssteigerung
 - Geographischen Lokalisierung
 - Entlang von Zuständigkeitsbereicher
- Setzen von Links

LDIF listing for the entry ou=people,dc=plainjoe,dc=org

dn: ou=people,dc=plainjoe,dc=org

objectClass: referral

ref: ldap://server2.plainjoe.org/ou=people,dc=plainjoe,dc=org

Schemabeispiel

SUN NIS Schema für OpenLDAP

Abfragen

- Bedient sich Postfix Notation (reverse polish notation)
- baseDN: Basis der Abfrage, inkl. Basiskontext wie base, sub oder one

Abfragen

- Keine Normalformen: LDAP ist ein Frontend zu einer hierarchischen Datenbanken.
- Es gibt keine Normalform; zum Beispiel können "multivalued attributes" erlaubt sein.
- Abfragesprache:
 - LDAP unterstützt nur Projektion ohne Erzeugung von errechneten Attributen und Selektion
 - Von den relationalen Operationen werden nur Projektion (Spaltenauswahl),
 Selektion (Zeilenauswahl), Kreuzprodukt (JOIN), Spaltenumbenennung
 (Rename, AS) und Aggregation (GROUP BY) unterstützt.
 - Kein Join oder einen Dereferenzierungs-Operator gibt es nicht
 - ein Rename und damit ein Selfjoin existiert nicht; Aggregation wird mit Schleifen im Client auscodiert.
 - LDAP-Abfragesprache keine Algebra, es fehlt die Abgeschlossenheit.
 - Abfrageergebnisse von LDAP-Anfragen sind keine LDAP-Bäume, sondern Knotenmengen, und die LDAP-Abfragesprache ist auf LDAP-Ergebnisse nicht wieder anwendbar, um die Ergebnisse zu verfeinern.

Abfragen

Beispiele:

Server: windc1.fu-berlin.de:3269

Base: DC=fu-berlin,DC=de

BindDn: carsten@FU-BERLIN.DE

Filter:

- (&(&(cn=*)(objectClass=inetOrgPerson))(objectClass=posixAcc

ount))

sAMAccountName=carsten

Idapsearch -x -W -LLL -D carsten@FU-BERLIN.DE -H
 Idaps://windc1.fu-berlin.de:3269 -b DC=fu-berlin,DC=de
 sAMAccountName=carsten

LDAP: Duplication/Replication/Updates

 Die Replikation von Verzeichnisdiensten über den LDAP Standard ist nicht spezifiziert. Jeder Hersteller hat eigene Methoden der Replikation

- Replikation
 - Warum?
 - Wann?
 - Volle Synchronisation
 - Differenzsynchronisation ...
 - über Log-Files
 - über Seriennummern von Einträgen

Wozu Verzeichnisdienstreplikation

- Lastverteilung
 - Applikationsspezifische Verzeichnisse
 - Hohe generelle Abfragelast
 - Große Änderungsrate
- Ausfallsicherheit erhöhen
 - Stromausfall
 - Datenkorruption
 - Redundanzen für Umbauten
- Standortreplikation
 - Ressourcenschonung wie Weitverkehrsnetzanbindungen
- ... als Backup

- Wann wird repliziert?
 - Bei Änderungen
 - Bei wichtigen Änderungen
 - Zeitgesteuert, z.B. Nachts in Außenstellen
 - Bei Neueinrichtungen
 - ... oder alles zusammen?

- Was sind die Voraussetzungen?
 - Keine Herstellerübergreifenden Standards, daher homogene
 Softwareausstattung, z.B. openLdap in kontrollierten Versionsständen
 - Gleichheit der Datenschemata
 - Erreichbarkeit der Systeme untereinander

- Bekannte Replikationsmechanismen
 - openLdap verwendete den SLURPD, der auf einem Change-Log für inkrementelle Änderungen beruht. Änderungen werden über LDAP-Befehle verteilt. Es gibt Push
 - Seit 2.4 Syncrepl mit RFC 4533 mit Active-Active,
 Multimastermodel
 - Active Directory nutzt DSN-basierte Replikation im Push und Pull-Verfahren. AD kann sowohl über TCP (RPC-Calls) als auch über SMTP replizieren. SMTP wird bei verteilten Forrests über mehrere Standorte verwendet.

- Replikation Erarbeitung als Tafelbild
 - Object SN = Serial Number
 - uSNCreated
 - uSNChanged
 - Sync-Log-File-

Syncrepl ...

- Consumer based
- Ist direkt in slapd integriert
- Statusorientierte Replikation push und pull
- Keine Historie oder Log
- Pull-based: periodisch wird der Provider nach Updates gefragt
- Push-based: Updates werden in Realzeit an Consumer übermittelt
- Status wird mit Synchronisationscookies überwacht
- Replikat kann zu jedem Zeitpunkt aus Backup von Provider oder Consumer erzeugt werden.
- Replikat kann jeder Zeit mit dem Inhalt des Providers abgeglichen werden.

Syncrepl ...

- Löschen über Session log eines Providers, dass entryUUIDs speichert
- Change Sequence Number (CSN) für LDAP-Objekte
- Es gibt eine maximale CSN im Provider
- The format of a CSN string is: yyyymmddhhmmssz#s#r#c where s is a counter of operations within a timeslice, r is the replica id (normally zero), and c is a counter of modifications within this operation
- Wenn kein contextCSN existiert, werden global welche erzeugt.
- Inkonsistenzen werden durch nachfolgende Syncs behoben
- Keine Transaktionssicherheit

Syncrepl ...

- Faulheit siegt: OpenLDAP-Replication-Strategies.pdf; PDF, Seiten 17 und 19
- Nachteile von LDAP Sync:
 - Objekt basierend
 - Geänderte und nicht geänderte Objekte werden übertragen
 - Viel Datenverkehr für wenige Änderungen

DELTA Syncrepl ...

- Basiert auf changelog und syncrepl
- Provider speichert Änderungen
- Consumer prüft das Changelog auf benötigte Einträge
- Replikate mit zu großen Differenzen werden weiterhin durch konventionelles syncrepl synchronisiert
- => UUID und Changelog ⇔ sehr geringe Datenlast während voller oder enger Synchronisation

Syncrepl Proxy Mode...

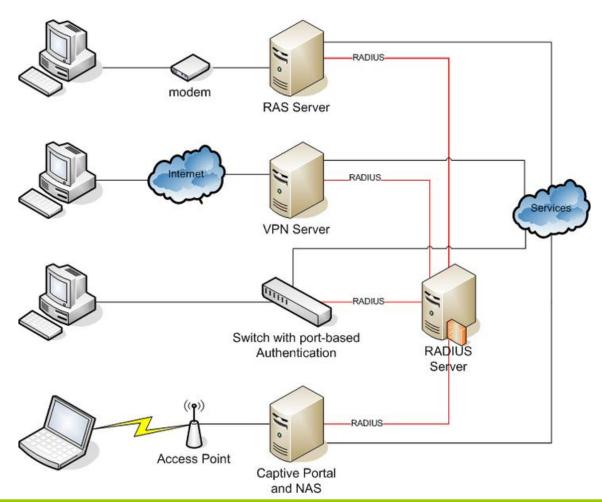
- Comsumer initiiert Verbindungen gegen Proxy
- Provider synchronisiert gegen Proxy
- Sinnvoll bei verdeckten oder nicht zugreifbaren Master-Nodes

Replikation in heterogenen Verzeichnisumgebungen

- Fall: Metadatenbank synchronisiert auf ein Active Directory und ein OpenLdap.
 - Wie und was wird synchronisiert?
 - Wer ist für die Synchronisation zuständig?
 - In welche Richtungen wird synchronisiert?

Remote Authentication Dial In User Service (RADIUS)

- Protokoll für die drei As: AAA = Authentication, Authorization, Accounting
- AAA für Computer und Netzwerkdienste
- Enwickelt von Livingston Enterprises im Jahre 1991.
- Späterer IEEE Standard
- Häufig von ISP verwendet für z.B. Internetzugänge, DSL-Auth, Netzwerkkonfigurationen, E-Mail-Diensten, VPN uvm.
- Beschrieben u.a. in RFC 2865 und RFC 2866


- Client-Server-Protokoll auf Schicht 4
- Verwendet UDP
- Radius-Server werden häufig auf Unix- oder Windows-Servern eingesetzt.
- Integration in Active Directory
- Anschluss an Datenbanken

Zweck

- Einen Benutzer zu authentisieren bevor er Zugang zu einem Netz/Dienst bekommt
- Die Berechtigungsstufe für authentisierte Benutzer festzulegen
- Die Verbrauchsdaten einer Dienstnutzung erfassen

Radius - Authentication and authorization

- Clientensystem sendet einen Request an einen Network Access Server (NAS), um Zugang zu erhalten. Er werden Credentials – Benutzername und Passwort – benötigt
- Dieser Request wird über das Link-Layer-Protokoll übermittelt (z.B. PPP) im Falle von dialup und DSL Providern.
- Der NAS sendet diese Credentials als Radius-Request an den Raiusserver und ggf. zusätzlich Informationen vom NAS-System selbst.
- Der Radius-Server prüft die Informationen anhand bekannter Authentisierungsschemata wie PAP, CHAP und EAP.

Radius - Authentication and authorization

- Nach erfolgter Verifikation antwortet der Radiusserver entweder mit
 - Ablehnung (reject)
 - Challenge: benötigt weitere Informationen wie Pin, Token oder Chipkarte
 - Zustimmung (accept)
- Bei Zustimmung können auch weitere Attribute übermittelt werden wie z.B. IP-Adresse, Telefonnummer, VLAN-ID uvm.
- Moderne Radiusserver können den Login gegen externe Loginsysteme prüfen:
 - SQL-Server
 - Kerberos
 - LDAP
 - Active Directory

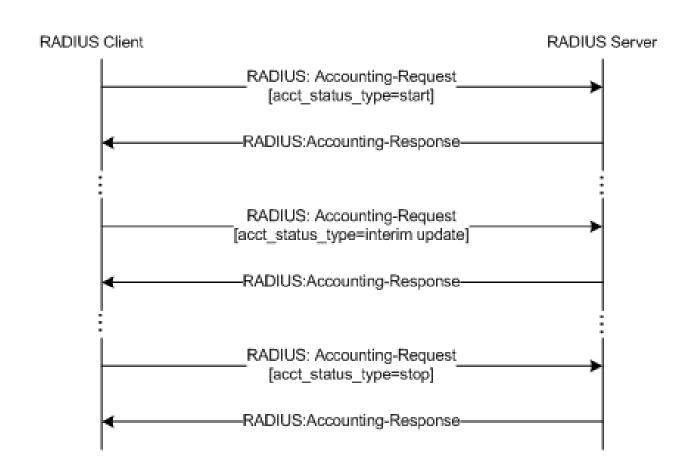
Radius - Accounting

- Nach erfolgreichen Login eines Benutzers gegen einen NAS mit Hilfe von Radius kann dieser NAS-Server ein Radius-Paket senden, dass den Namen Accounting-Start trägt.
 - Beinhaltet typischerweise Benutzernamen, Netzwerkadresse,
 Anschlusspunktinformationen und einen Session-Identifier
- Der NAS kann periodische Updates (interim update) an den Radiusserver senden.
- Am Ende einer Session sendet das NAS Accounting Stop an den Radius-Server

Radius - Session

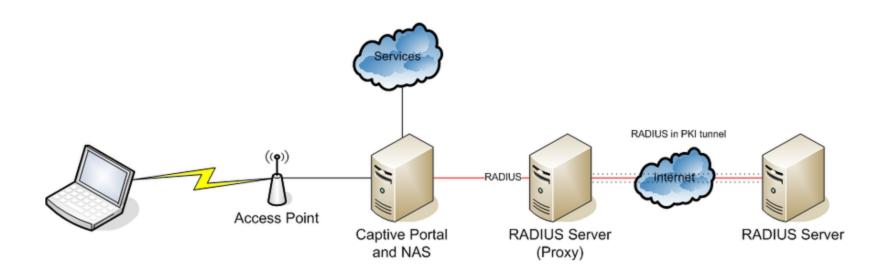
Beispielausgabe von radwho

zeus:/# radwho


Login	Name	What	TTY	When	From	Location
_						
bkunz	bkunz	PPP	s7	Wed 08:1	160.45.11	130.133.48.220
robocup	robocup	PPP	S8	Wed 16:0	160.45.11	130.133.54.96
martni	martni	PPP	S23	Fri 09:5	160.45.11	130.133.51.193
scherfen	scherfen	PPP	S42	Mon 10:4	160.45.11	130.133.52.103
bockmayr	bockmayr	PPP	S46	Tue 10:5	160.45.11	130.133.52.203
preineck	preineck	PPP	S0	Wed 07:3	160.45.11	130.133.48.76
stucki	stucki	PPP	S2	Wed 04:2	160.45.11	130.133.48.22
scharfenbe	scharfenberg	PPP	S1	Tue 15:5	160.45.11	130.133.48.128
akrillo	akrillo	PPP	S3	Wed 07:0	160.45.11	130.133.48.149
ddomazer	ddomazer	PPP	S4	Wed 07:4	160.45.11	130.133.50.26
hochen	hochen	PPP	S5	Tue 13:5	160.45.11	130 . 133 .54.75

Radius - Authentication

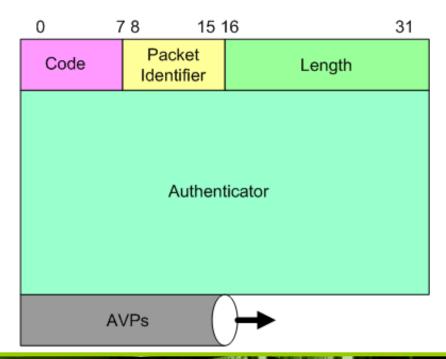
Beispieldatensatz für Benutzer schauble für VPN am FB


Radius - Accounting

Auszug für Benutzer carsten für VPN am FB

```
Accounting-ID: 164293;
Session-ID: "497CD8B24F1700";
Username: "carsten";
NAS IP Address: "160.45.113.246";
NAS Port ID: 10;
Start: "2009-01-25 22:25:06+01";
Stop: "2009-01-25 22:41:41+01";
Session Time(s): 995;
Bytes IN: 1162177;
Byte OUT: 3009158;
Framed protocol: "PPP";
Framed IP Address: "130.133.48.2"
```


Radius - Roaming



Radius - Paket

http://en.wikipedia.org/wiki/RADIUS

Radius - Beispiele

Fachbereich Mathematik und Informatik Aufbau über Metadatenbanken, Radius und Webserver

- VPN-System
- Netzwerkauthentisierung für Switches Systemkomponenten
- MIID
- Radius-DBs
- Radius-Server
- Portal
- Synchronisationsprogramme
- Monitoring
- Messaging
- Uvm.

Identity Management beschäftigt sich mit der Zuordnung von personenbezogenen Daten in Rechneranlagen.

Hierbei werden Anforderungen von Computersystemen, Applikationen, betrieblichen Interessen und Datenschutz verwaltet, korreliert, synchronisiert usw.

Kontext

- Im Internet zwischen verschiedenen unabhängigen Dienstanbietern
- In abgeschlossenen Umgebungen wie Banken, Universität, Telekommunikationsanbietern uvm.
- Wird benötigt, um in einer Organisation unterschiedliche Anlagen, Betriebsanforderungen und Betriebsanläufe zu organisieren

- Geltungsbereich (innerhalb von Organisationen oder organisationsübergreifend/föderal)
- Lebenszyklus
- Verwaltung und Schutz der Informationen (Attribute)
 Rollenmanagement über Identitäten
- Verknüpfung der Rollen mit Pflichten, Verantwortungen, Privilegien und Rechten für den Zugriff auf Ressourcen
- Systeme, in denen die Daten gespeichert werden (Verzeichnisse, Datenbanken, etc.)
- Zugansmedien, welche die Daten enthalten (Token, Karten)

Wir benötigt um ...

- Personenbezogene kontinuierlich und konsistent zu verwalten, bereit zu halten und zu verändern.
- Rechtliche Anforderungen umzusetzen

Anfänglich wurden LDAP-Systeme zur Lösung der multiplen Zugangskorrelationen genutzt.

Später wurden verteilte Datenbanken verwendet.

Typen von Identitätsmanagement und – speichern

- Förderales IM
- Dezentrales IM
- Zentrales IM

Abgrenzung zwischen Anlagen- und personenbezogenen Daten

- Welches Datum ist personenbezogen, welches ist ein klares Anlagenmerkmal

Implementierungsformen

- LDAP
- Datenbanken
- Metadatenbanken

Mehrwertdienste

- Single Sign On
- Statistik
- Zugangsportale
- Metadaten zur Synchronisation in neue, bislang nicht integrierte Systeme

Zentrales Paradigma

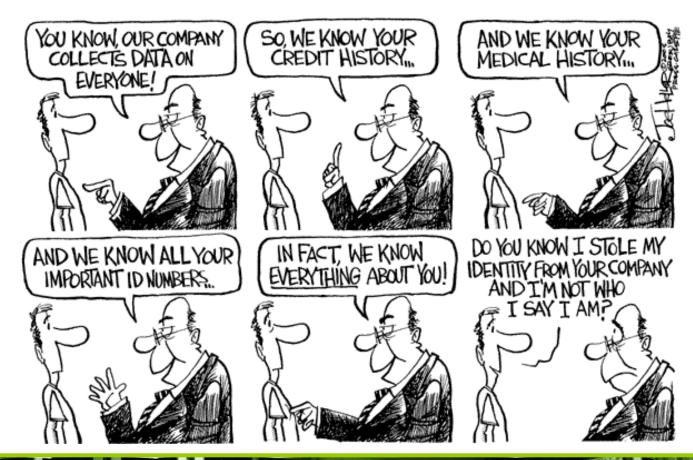
- Wer benötigt
- Was
- Wozu
- Wann
- Wie lange?

IT-Systeme müssen mit dem Minimum an Daten auskommen, um zielgerichtet mit Daten zu arbeiten.

Daten wecken Begehrlichkeiten und führen zur zweckentfremdeten Nutzung.

IM in der FU-Berlin

- FUDIS an der ZEDAT als Zentrale Datendrehscheibe – verteiltes und gleichzeitig förderales IM
- Studierendenverwaltung
- Personaldatenbank (SAP)
- Lokale Datenbanken (MIID)
- Dienstedatenbanken (BIOS)



IM in der FU-Berlin

- Zugangsportale
 - Verwaltung von Diensten
- Identity Provider
 - Radius
 - LDAP

IM in ...

IM in Zahlen

- IM synchronisieren heutzutage über 30 Zielsysteme
- Systeme mit mehr als 30 Mio. Identitäten
 US Steuerbehörde ca. 200 Mio.
 Datensätze
- Datensätze von mehren KB/Identität führen zu Datenbanken von Terrabytegrößen, sowohl verteilt, als auch zentral!

Kerberos (nur V5)

- Ein Autentisierungsprotokoll
- Erlaubt die Identitätsbestätigung über unsichere Netzwerke zweiter Kommunikationspartner
- Free Software vom MIT
- Gegenseitige Autentisierung (mutual auth.)
- Client-Server

Geschützt ...

- gegen Abhören (eavesdropping)
- Replay Angriffe

Begriffe

- Key Distribution Center: Kennt Benutzernamen und Passworte
- Admin Server: erlaubt als einzger Server Änderungen
- Service Principal Name: der Username ...
- Ticket: Ergebnis einer positiven Authentisierung
- Service: Eine Software, die eine eigene Identität benötigt
- Ticket Forwarding: Transitive Nutzung von Tickets, z.B. für SSH-Hopping
- Key-Tab: privater Schlüssel eines Dienstes/Hosts

Begriffe

- Realm: Administrativer Bereich, Gruppierung für alle Principals. Realm wird immer GROß geschrieben.
- Principal: jedes in Kerberos agierende Objekt hat einen Principal. Ein Principal ist ein eindeutiger Name in einem Realm und von der Struktur her hierarchisch aufgebaut.
 - Benutzer schauble schauble@FU-BERLIN.DE
 - Host Moskau host/moskau@imp.fu-berlin.de@UX.IMP.FU-BERLIN.DE
 - Es gibt Service- oder Host-Principals
 - Format: username/instance@REALM service/fully-qualified-domain-name@REALM

- Kerberos erledigt ausschließlich das erste A von AAA
 - Authentication !!!

Vorteile gegenüber anderen Logins ...

- Tickets erlauben single-sign on gegen ebenfalls "kerberisierte" Dienste – Ticketlebenszeit 8-24h
- Kommunikation nach erster Authentisierung erfolgt ohne weitere Passwörter
- Passwort wird niemals im Klartext übermittelt, sondern immer durch die Key-Tab verschlüsselt und am KDC verifiziert.

KDC ...

- Datenbank für SPNs
- Authentication Server
- Ticket Granting Server
- KDCs müssen sich über herstellerspezifische Methoden synchronisieren – kein Standard

Authentication Server

- AS vergibt verschlüsselte Ticket Granting Tickets (TGT) an Klienten, die sich in der REALM einloggen möchten.
- Login erfolgt nicht gegen KDC. KDC verschlüsselt TGT mit Benutzernamenpasswort.
- TGT wird genutzt, um individuelle Service-Tickets zu erzeugen => für jede Kommunikation wird ein eigenes Ticket erzeugt.

Ticket Granting Server (TGS)

- Vergibt individuelle Tickets an clients
- Service Ticket wird erzeugt mit
 - -TGT
 - Serviceanforderung

Tickets

- Verschlüsselte Datenstruktur vom KDC mit shared encryption key, der pro Session einzigartig ist.
- Erzeugt Authentisierung und gemeinsames Verschlüsselungstoken für Session.
- Tickets haben Gültigkeit (typ. 8-24h)
- Felder:
 - Benutzer Principal UPN
 - Service SPN
 - Gültigkeitsbereich (Start, Stop)
 - Nutungsbereich (IPs von denen Ticket genutzt werden darf)
 - Session Key

Nachteile

- Lokale Uhren müssen bis auf wenige Sekunden genau synchron sein.
- Es kann nur einen Admin-Server geben
- Single Point auf Failure: Es müssen mehrere KDC installiert werden, um Redundanzen zu erzeugen.
- Admin-Protokoll ist nicht standartisiert

Ticketoptionen und -erweiterungen

- Forwardable Ticket: Tickets können durchgereicht werden und damit von einem Dienst weiterverwendet werden
 - z.B. bei SSH: Das TGT wird genutzt um ein weiteres TGT beim Login zu erzeugen, um lokale Dienste zu nutzen wie die Shell
- Renewable Tickets: können in der Lebenszeit erneuert werden.
- Postdated Tickets: werden erst in der Zukunft gültig – selten genutzt.