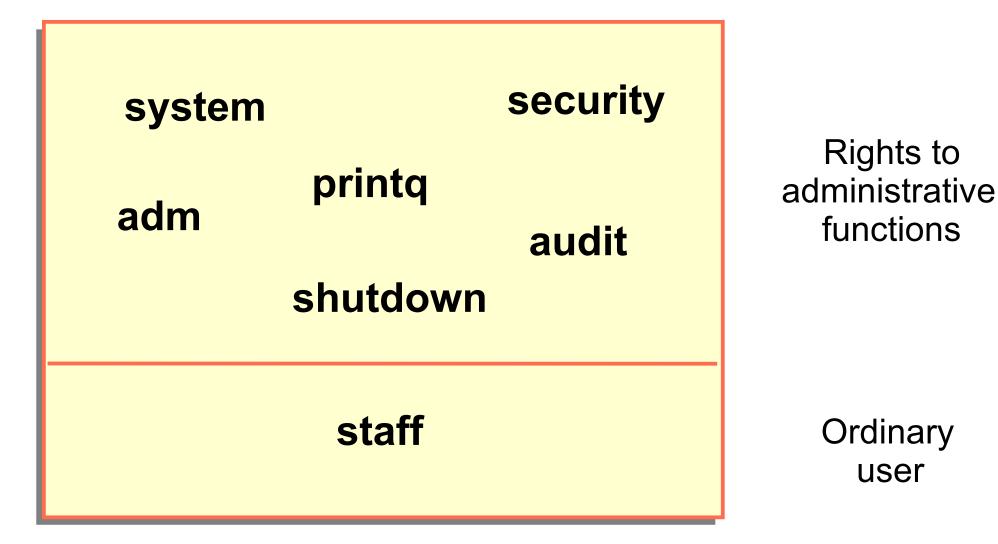
Unit 14 Security and user administration

© Copyright IBM Corporation 2008

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

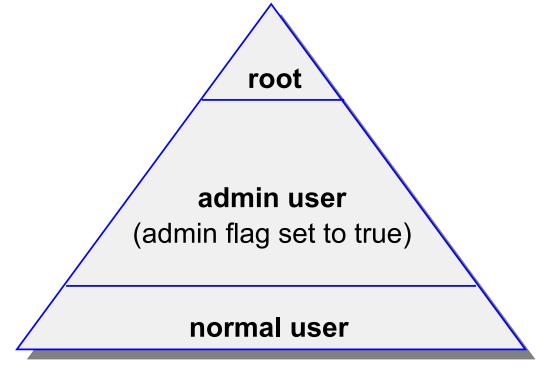
Unit objectives

After completing this unit, you should be able to:


- Define the concepts of users and groups, and explain how and when these should be allocated on the system
- Describe ways of controlling root access on the system
- Explain the uses of SUID, SGID, and SVTX permission bits
- Administer user accounts and groups
- Identify the data files associated with users and security

User accounts

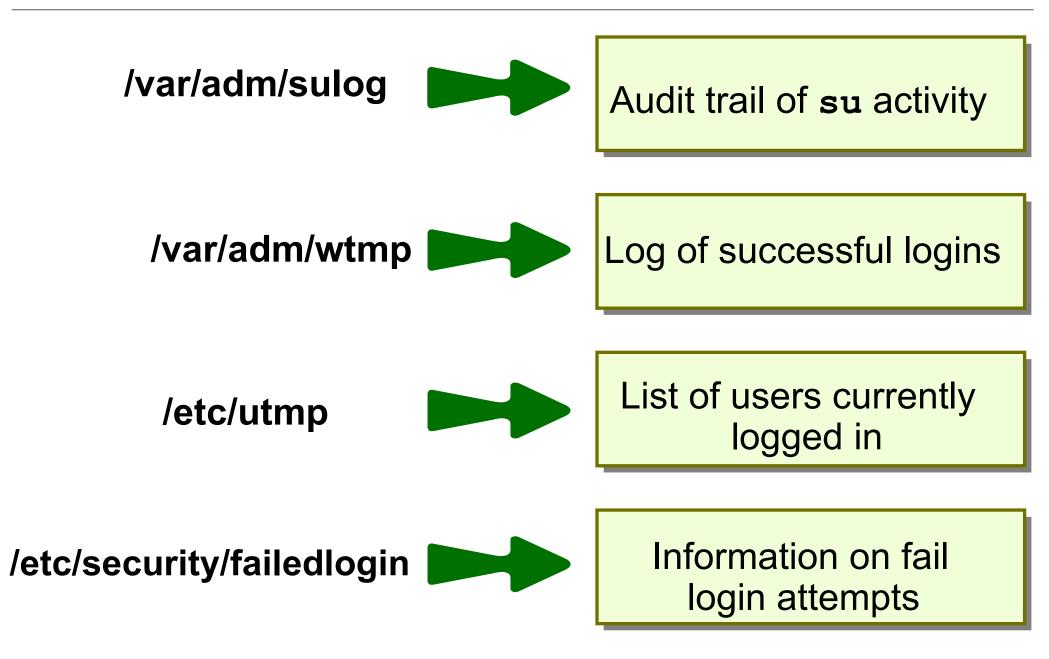
- Each user has a unique name, numeric ID, and password
- File ownership is determined by a numeric user ID
- The owner is usually the user who created the file, but ownership can be transferred by root
- Default users:
 - root Superuser
 - adm, sys, bin, ... IDs that own system files but cannot be used for login


Groups

- A group is a set of users, all of whom need access to a given set of files.
- Every user is a member of at least one group and can be a member of several groups.
- The user has access to a file if any group in the user's groupset provides access. To list the groupset, use the groups command.
- The user's real group ID is used for file ownership on creation. To change the real group ID, use the newgrp command.
- Default groups:
 - System administrators: system
 - Ordinary users: staff

User hierarchy

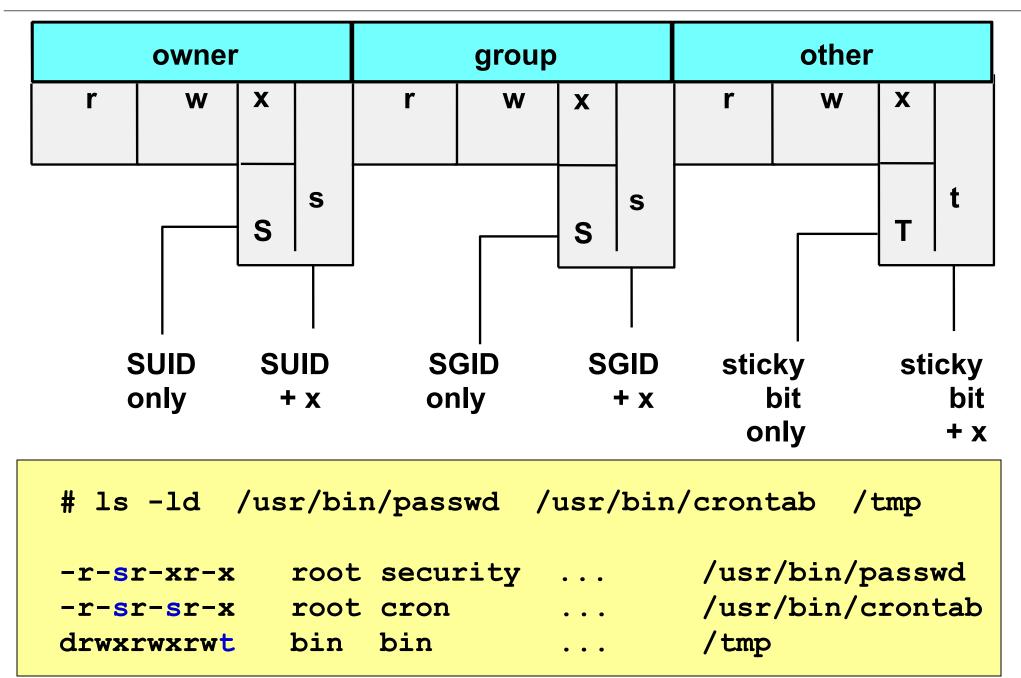
- To protect important users and groups from members of the security group, AIX has admin users and admin groups
- Only root can add, remove, or change an admin user or admin group
- Any user on the system can be defined as an admin user regardless of the group they are in



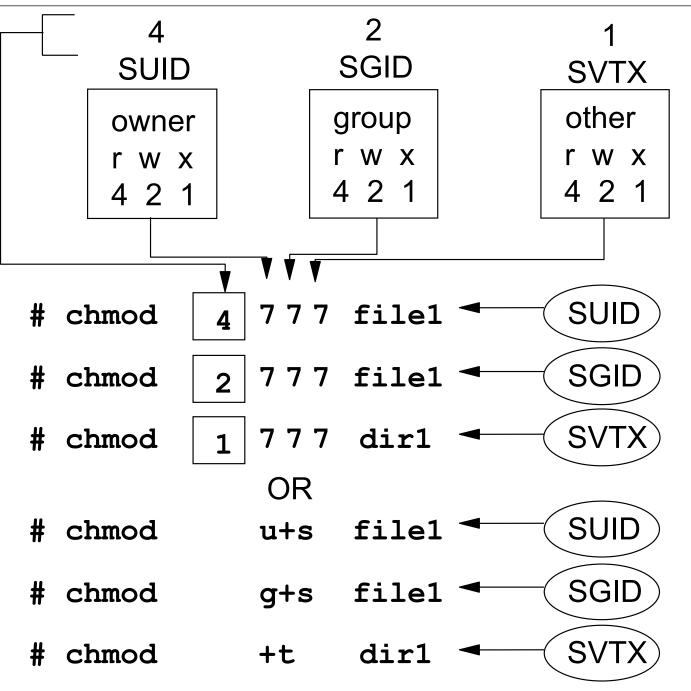
© Copyright IBM Corporation 2008

Controlling access to the root account

- Restrict access to privileged logins
- root's passwords should be changed on an unannounced schedule by the system administrator
- Assign different root passwords to different machines
- System administrators should always login as themselves first and then su to root instead of logging in as root. This helps provide an audit trail for root usage
- Do not include unsecured directories in **root's PATH**


Security logs

File/Directory permissions


File	Perm. Bit	Directory
Read content of file	r	List content of directory
Modify content of file	W	Create and remove files in directory
Use file name to execute as a command	X	Give access to directory
Run program with effective UID of owner	SUID	
Run program with effective GID of group	SGID	Files created in directory inherit the same group as the directory
	SVTX	Must be owner of files to delete files from directory

Reading permissions

© Copyright IBM Corporation 2008

Changing permissions

© Copyright IBM Corporation 2008

- The umask governs permissions on new files and directories
- System default umask is 022
- A umask of 027 is recommended
- If the umask value is set to 022, then any ordinary files or directories created inherit the following permissions:
 - Ordinary file:

rw-r--r-

- Directory: **rwxr-xr-x**
- /etc/security/user specifies default and individual user umask values

Changing ownership

The **chown** command:

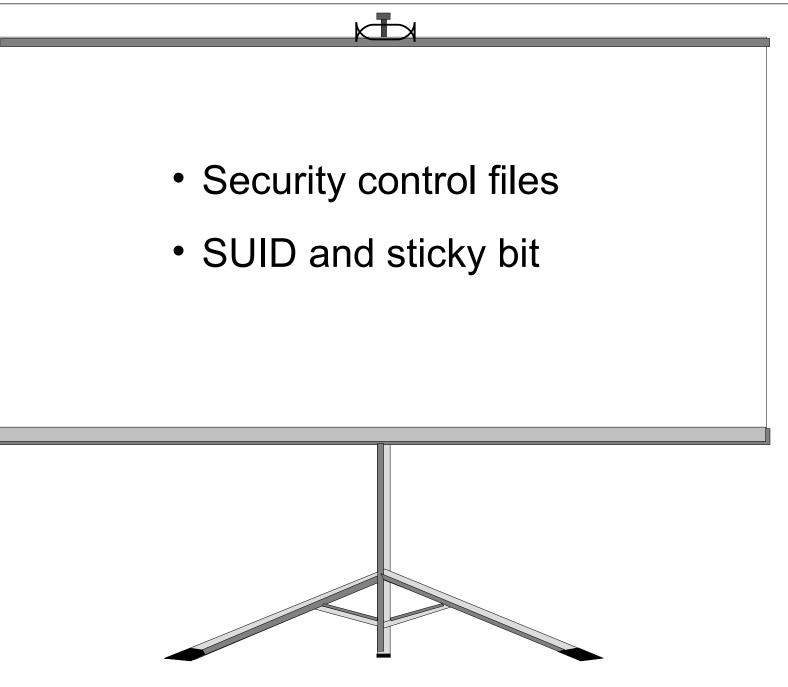
chown fred file1

The **chgrp** command:

```
# chgrp staff file1
```

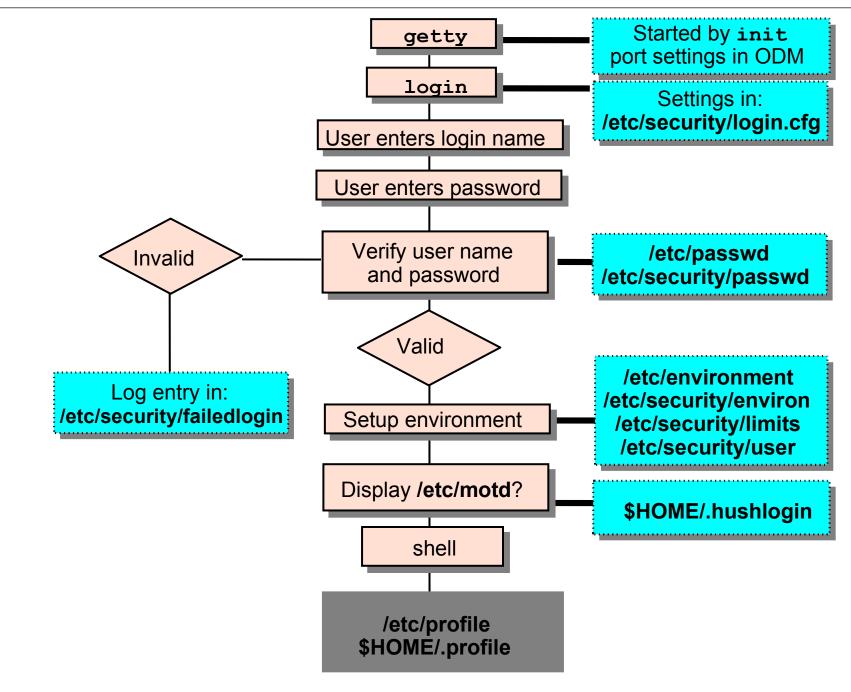
Changing both user and group ownership:

```
# chown fred:staff file1
# chown fred.staff file1
```

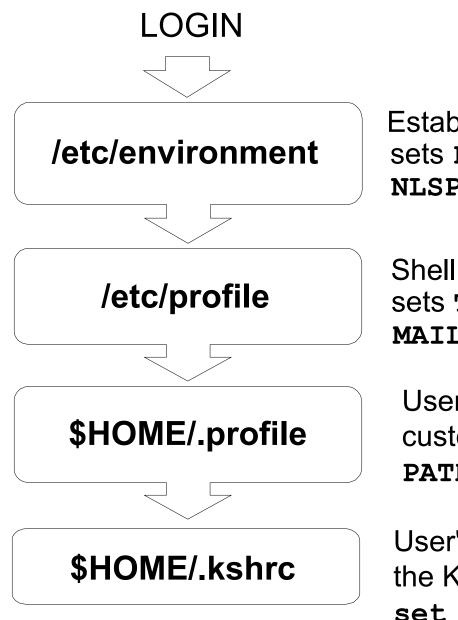

Role based access control (RBAC)

- Fine grained delegation of authority
 - Roles assigned as an attribute of the user or group
- Legacy RBAC (AIX V4.2+):
 - User space implementation
 - Role assignment alone was insufficient
- Enhanced RBAC (AIX 6.1):
 - Covers user and kernel space
 - Effective role assignment without additional configuration
 - AIX 6.1 SP1 provides 10 predefined roles
- User can activate/inactivate roles as needed
 - Create subshell with role in effect:
 - \$ swrole SysBoot

Predefined enhanced RBAC roles


- isso Information System Security Officer
- sa System Administrator
- so System Operator
- AccountAdmin User and Group Account Administration
- BackupRestore -Backup and Restore Administration
- DomainAdmin Remote Domain Administration
- FSAdmin File System Administration
- SecPolicy Security Policy Administration
- SysBoot System Boot Administration
- SysConfig System Configuration

Exercise 15: Security files


© Copyright IBM Corporation 2008

Login sequence

© Copyright IBM Corporation 2008

User initialization process

Establishes base environment sets **PATH**, **TZ**, **LANG**, and **NLSPATH**

Shell script run at all logins sets **TERM**, **MAILMSG**, and **MAIL**

User's personal file to customize their environment **PATH**, **ENV**, **PS1**

User's personal file to customize the Korn shell environment set -o vi, alias

Security and users

smit security

				Secur	ity & Us	sers			
		ırsc	or to	desire	d item a	and p	oress	Enter	•
	Users Groups								
	Passwoi	rds							
	Login (Cont	rols						
•	Roles								
	PKI								
	LDAP								
•	Role Ba	ased	l Acce	ess Cont	trol (RE	BAC)			
	Trusted	d Ex	ecuti	lon					
	F1=Help	P	F2=Re	efresh	F3=Canc	cel	F8=Im	lage	
	F9=Shel	11	F10=E	Exit	Enter=D	00			

SMIT users

smit users

Users Move cursor to desired item and press Enter. Add a User Change a User's Password Change / Show Characteristics of a User Lock / Unlock a User's Account Reset User's Failed Login Count Remove a User List All Users F1=Help F2=Refresh F3=Cancel F8=Image F9=Shell F10=Exit Enter=Do

```
The lsuser command:
lsuser [-c | -f] [-a attribute ...] {ALL | username ...}
```

Example:

```
# lsuser -a id home ALL
root id=0 home=/
daemon id=1 home=/etc
bin id=2 home=/bin
....
john id=200 home=/home/john
....
```

Add a user to the system

smit mkuser

. . .

Add a Use:	r	
•••	[Entry Fields]	
* User NAME	[]	
User ID	[]	#
ADMINISTRATIVE USER?	false	+
Primary GROUP	[]	+
Group SET	[]	+
ADMINISTRATIVE GROUPS	[]	+
ROLES	[]	+
Another user can SU TO USER?	true	+
SU GROUPS	[ALL]	+
HOME directory	[]	
Initial PROGRAM	[]	
User INFORMATION	[]	
EXPIRATION date (MMDDhhmmyy)	[0]	
Is this user ACCOUNT LOCKED? [MORE37]	false	+

Change / Show Characteristics of a User

smit chuser

. . .

Change / Show Characteris	tics of a User	
•••	[Entry Fields]	
* User NAME User ID ADMINISTRATIVE USER? false Primary GROUP Group SET ADMINISTRATIVE GROUPS	<pre>george [206] + [staff] [staff,security] []</pre>	# + + +
ROLES [] Another user can SU TO USER?	true +	+
SU GROUPS HOME directory Initial PROGRAM User INFORMATION EXPIRATION date (MMDDhhmmyy)	[ALL] [/home/george] [/usr/bin/ksh] [] [0]	+
Is this user ACCOUNT LOCKED? [MORE37]	false	+

Remove a user from the system

•The **rmuser** command or SMIT can be used to delete a user from the system.

rmuser -p team01

 When you remove a user, that user's home directory is not deleted. Therefore, you must remember to manually *clean up* the directories of users you remove. (Remember to backup important files first!)

rm -r /home/team01

Passwords

- A new user ID cannot be used until a password is assigned
- There are two commands available for making password changes:

passwd [username]

pwdadm username

- SMIT invokes the **passwd** command
- An ordinary user can use the **passwd** command to change own password
- Only root or member of security group can change password of another user

- Boot from CD-ROM, NIM, or a bootable tape
- Select option 3: Start Maintenance Mode for System Recovery from the Installation and Maintenance menu
- Follow the options to activate the root volume group and obtain a shell
- Once a shell is available, execute the passwd command to change root's password
- Enter the following command:
 # sync ; sync
- Reboot the system

SMIT groups

smit groups

Group	os
Move cursor to desired :	item and press Enter.
List All Groups Add a Group Change / Show Character: Remove a Group	istics of a Group
F1=Help F2=Refresh F9=Shell F10=Exit	

List all groups

The lsgroup command: lsgroup [-c | -f] [-a attribute ...] {ALL | groupname ...}

Example:

```
# lsgroup ALL
system id=0 admin=true users=root,test2 registry=compat
staff id=1 admin=false users=ipsec,team01,team02,team03,
team04,team05,test1,daemon registry=compat
bin id=2 admin=true users=root,bin registry=compat
sys id=3 admin=true users=root,bin,sys registry=compat
adm id=4 admin=true users=bin,adm registry=compat
uucp id=5 admin=true users=uucp,nuucp registry=compat
...
ipsec id=200 admin=false users= registry=compat
```

Add a Group

smit mkgroup

Add a Group

Type or select values in entry fields. Press Enter AFTER making all desired changes.

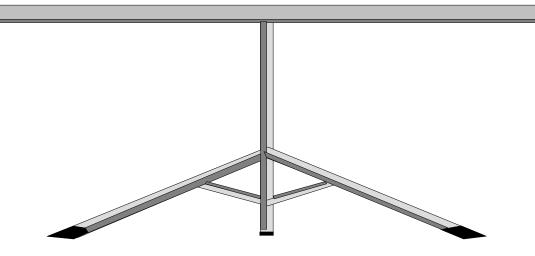
[Entry Fields]

* Grou	P NAME		[support]	
ADMI	NISTRATI	VE group?	false	+
Grou	p ID		[300]	#
USER	list		[fred,bar	ney] +
ADMI	NISTRATO	R list	[fred]	+
Proj	ects		[]	+
Init	ial Keys	tore Mode	[]	+
Keys	tore Enc	ryption Algorithm	[]	+
Keys	tore Acc	ess	[]	+
F1=Hel	p	F2=Refresh	F3=Cancel	F4=List
F5=Res	et	F6=Command	F7=Edit	F8=Image
F9=She	11	F10=Exit	Enter=Do	

Change / remove groups

smit chgroup

Change Group Attributes Type or select values in entry fields. Press Enter AFTER making all desired changes. [Entry Fields] [Support] Group NAME # Group ID [300] False ADMINISTRATIVE group? + USER list [fred, barney, wilma] + ADMINISTRATOR list [fred] + Projects **[**] + Initial Keystore Mode Γ 1 + Keystore Encryption Algorithm Γ 1 + Γ 1 **Keystore** Access + F2=Refresh F1=Help F3=Cancel F4=List F5=Reset F6=Command F7=Edit F8=Image F9=Shell Enter=Do F10=Exit


Message of the day

- The file /etc/motd contains text that is displayed every time a user logs in
- This file should only contain information necessary for the users to see
- If the \$HOME/.hushlogin file exists in a user's home directory, then the contents of the /etc/motd file are not displayed to that user

Exercise 16: User administration (parts 1-5)

- Part 1 User administration
- Part 2 Group administration
- Part 3 Customizing the default .profile file
- Part 4 Removing users
- Part 5 Communicating with users

Security files

- Files used to contain user attributes and control access:
 - /etc/passwd
 - /etc/group
 - /etc/security
 - /etc/security/passwd
 - /etc/security/user
 - /etc/security/group
 - /etc/security/limits
 - /etc/security/environ
 - /etc/security/login.cfg

Valid users (not passwords) Valid groups

Directory not accessible to normal users

User passwords User attributes, password restrictions Group attributes User limits User environment settings Login settings

/etc/passwd file

cat /etc/passwd

root:!:0:0::/:/usr/bin/ksh daemon:!:1:1::/etc: bin:1:2:2::/bin: sys:!:3:3::/usr/sys: adm:!:4:4::/var/adm: uucp:!:5:5::/usr/lib/uucp: guest:!:100:100::/home/guest: nobody:!:4294967294:4294967294::/: lpd:!:9:4294967294::/: lp:*:11:11::/var/spool/lp:/bin/false invscout:*:6:12::/var/adm/invscout:/usr/bin/ksh snapp:*:200:13:snapp login user:/usr/sbin/snapp:/usr/sbin/snappd nuucp:*:7:5:uucp login user:/var/spool/uucppublic:/usr/sbin/uucp/uucico ipsec:*:201:1::/etc/ipsec:/usr/bin/ksh esaadmin:*:811:0::/home/esaadmin:/usr/bin/ksh john:!:200:0:x7560 5th floor:/home/john:/usr/bin/ksh bill:*:201:1::/home/bill:/usr/bin/ksh

/etc/security/passwd file

```
# cat /etc/security/passwd
  root:
       password = 92t.mzJBjlfbY
       lastupdate = 885485990
       flags =
  daemon:
       password = *
 bin:
       password = *
  john:
       password = q/gD6q.ss21x.
       lastupdate = 884801337
       flags = ADMCHG, ADMIN, NOCHECK
```

/etc/security/user file (1 of 2)

cat /etc/security/user

```
default:
       admin = false
        login = true
        su = true
       daemon = true
        rlogin = true
        sugroups = ALL
        admgroups =
        ttys = ALL
        auth1 = SYSTEM
        auth2 = NONE
        tpath = nosak
       umask = 022
       expires = 0
```

/etc/security/user file (2 of 2)

```
default
      SYSTEM = "compat"
       logintimes =
      pwdwarntime = 0
      account locked = false
       loginretries = 0
      histexpire = 0
      histsize = 0
      minage = 0
      maxage = 0
      maxexpired = -1
      minalpha = 0
      minother = 0
      minlen = 0
      mindiff = 0
      maxrepeats = 8
      dictionlist =
      pwdchecks =
```

Group files

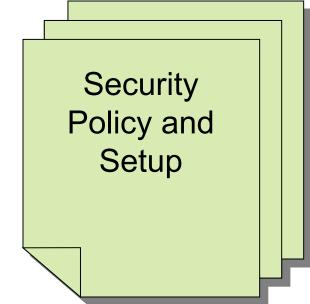
• •

```
# more /etc/group
```

```
system:!:0:root,john
staff:!:john
bin:!:2:root,bin
sys:!:3:root,bin,sys
...
usr:!:100:guest
accounts:!:200:john
```

more /etc/security/group

system:	
	admin=true
staff:	
	admin=false
accounts:	
	admin=false
	adms=john
	projects=system


```
default:
    herald ="Authorized use only.\n\rlogin:"
    logintimes =
    logindisable = 0
    logininterval = 0
    loginreenable = 0
    logindelay = 0
    pwdprompt = "Password: "
    usernameecho = false
```

Validating the user environment

- **pwdck** verifies the validity of local authentication information:
 - $pwdck \{-n|-p|-t|-y\} \{ALL | username\}$
 - Verifies that /etc/passwd and /etc/security/passwd are consistent with each other and with /etc/security/login.cfg and /etc/security/user
- **usrck** verifies the validity of a user definition:
 - usrck $\{-1 | -b | -n | -p | -t | -y\}$ {ALL | username}
 - Checks each user name in /etc/passwd, /etc/security/user, /etc/security/limits and /etc/security/passwd
 - Checks are made to ensure that each has an entry in /etc/group and /etc/security/group
- grpck verifies the validity of a group:
 - grpck {-n|-p|-t|-y} {ALL | groupname }
 - Verifies that the files /etc/passwd, /etc/security/user, /etc/group and /etc/security/group are consistent

Documenting security policy and setup

- Identify the different types of users and what data they will need to access
- Organize groups around the type of work that is to be done
- Organize ownership of data to fit with the group structure
- Set SVTX on shared directories
- Remember that UNIX/AIX has no concept of application ownership

Checkpoint (1 of 2)

•	What are the benefits of using the su command to switch user
	to root over logging in as root ?

5. Why is a umask of 027 recommended?

As a member of the security group, which password command would you use?

• Which password change command does SMIT use?

13.True or False? When you delete a user from the system, all the user's files and directories are also deleted.

Checkpoint solutions (1 of 2)

 What are the benefits of using the su command to switch user to root over logging in as root?

<u>A log (which can be monitored) of all users executing the su</u> command is kept in the sulog.

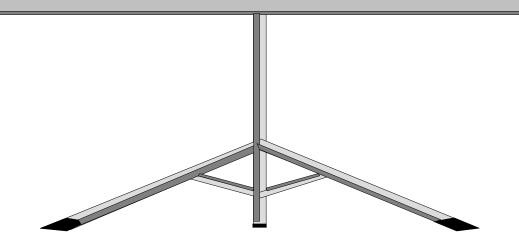
• Why is a **umask** of 027 recommended?

This value removes all permission bits for the "others" category, which enhances security.

- As a member of the security group, which password command would you use?
 <u>pwdadm</u> (This command does not prompt for the root password or the old password of the user whose password is being changed.)
- Which password change command does SMIT use?
 passwd
- True or False? When you delete a user from the system, all the user's files and directories are also deleted.

Checkpoint (2 of 2)

- 1.If an ordinary user forgets their password, can the system administrator find out by querying the system as to what the user's password was set to? _____ Why? _____
- 2.Password restrictions are set in which of the following files?
 - /etc/passwd
 - /etc/security/passwd
 - /etc/security/restrictions
 - /etc/security/user
- 3. Which of the following statements are true?
 - A user can only belong to one group
 - A member of the **security** group can administer user accounts
 - An admin user is a user whose account cannot be administered by any member of the security group (except root)
 - The **chmod g+s** command sets the SUID permission of a file
 - The root user, commonly known as the superuser has UID=0 and GID=0


Checkpoint solutions (2 of 2)

- If an ordinary user forgets their password, can the system administrator find out by querying the system as to what the user's password was set to? <u>No</u>, <u>because the passwords are held in encrypted format, so even the system</u> <u>administrator cannot tell what the password was set to.</u>
- 2. Password restrictions are set in which of the following files?
 - /etc/passwd
 - /etc/security/passwd
 - /etc/security/restrictions
 -) /etc/security/user
- 3. Which of the following statements are true?
 - A user can only belong to one group
 - A member of the **security** group can administer user accounts
 - An admin user is a user whose account cannot be administered by any member of the security group (except root)
 - The **chmod g+s** command sets the SUID permission of a file
 - The root user, commonly known as the superuser has UID=0 and GID=0

Exercise 16: User administration (parts 6-7)

- Part 6 Examine the security set up
- Part 7 Customizing the login herald

- User and groups can be added and deleted from the system by using SMIT or by using high level commands.
- Passwords must be set for all users using either pwdadm or passwd.
- Administrative users and groups can only be administered by root.
- Every user must be in at least one group.
- Certain groups give users additional privileges.
- Security files are located in ASCII text files in the /etc and /etc/security directories.