

Architektur und Betrieb von Systems kommerziellen Anwendungssystemen

Inhalt: Rechnerarchitektur, Softwarearchitektur, Systemadministration und -betrieb müssen aufeinander abgestimmt sein, um für ein kommerziell eingesetztes Informationssystem eine hohe Leistung bei gleichzeitig geringen Betriebskosten zu erzielen. Typische Probleme sind dabei Antwortzeitverhalten, Durchsatz, Sicherheit, Schutz vor Datenverlust, Serverkonsolidierung, Skalierbarkeit, Hochverfügbarkeit und die Integration existierender Infrastruktur. In dieser Lehrveranstaltung werden mögliche Lösungen und die Vorteile einer integrierten Betriebssystemumgebung am Beispiel einer iSeries Umgebung ganzheitlich studiert. In den begleitenden Übungen arbeiten die Teilnehmer an einem IBM eServer i5.

Dauer: 2h Vorlesung, (optional 2h Lab)

Einordnung: SP 2 (Rechnerarchitektur, eingebettete Systeme und Simulation) SP 5 (Sicherheit und Verifikation)

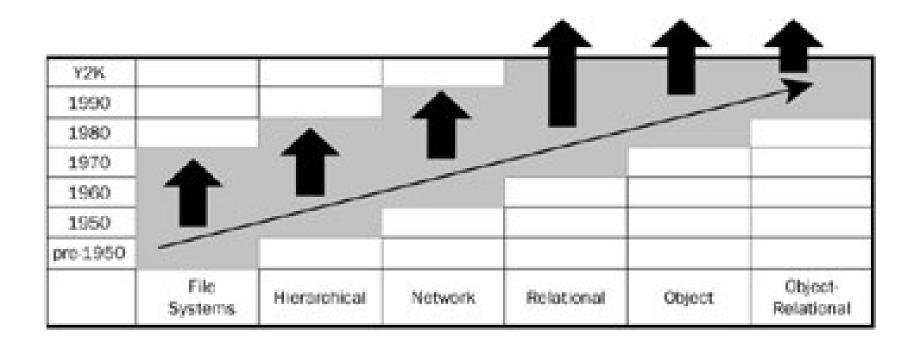
Lab (optional): Die Übungen können über eine VPN-Verbindung und mittels Remote Desktop an einem 4-Prozessor eServer i5 Modell 550 durchgeführt werden.

Module 8

Content (planned)

Power Systems

- Requirements for Modern Application Systems
- i5/OS Architecture
- OS Security
- Work Management
- Networking
- Databases and Filesystems
- Consolidation of Windows Environments
- Storage Consolidation
- e-business Infrastructure
- High Availablility
- Backup and Restore
- Logical Partioning
- Virtualization Technologies



Power Systems

8.1 DB Basics

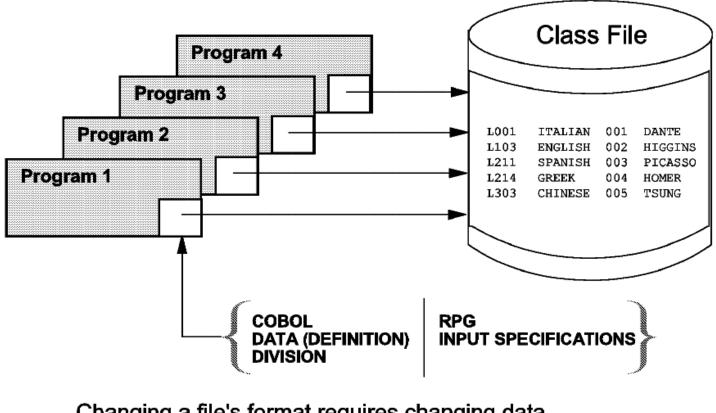
The Evolution of Systems Database Modeling Techniques

Source: "Beginning Database Design and Implementation", Gavin Powell, ISBN:0764574906

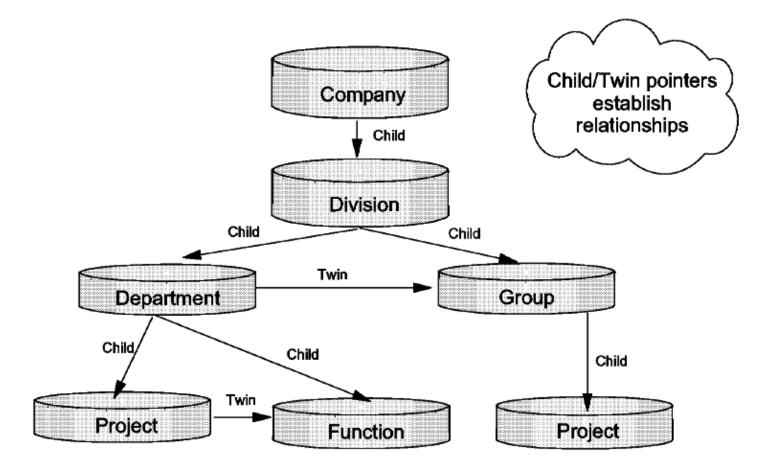
© Copyright IBM Corporation 2008 Material may not be reproduced in whole or in part without the prior written permission of IBM. Power

File Systems

Power Systems


- data are stored in flat files
 - no data types
 - no indexing, any searching through flat files for data has to be explicitly programmed
- data or better file management have to be done by operating system
- CSV files are still very popular

Program-Described Database File


Each Program has it's own data definitions!

Changing a file's format requires changing data definition in each program

Hierarchical Database Systems

Power Systems

Information Management System (IMS)

- hierarchical database
- IBM introduced IMS in 1968
 - simple structure
 - performance
 - IMS can store parent/child close to another minimizing disk I/O
- still very widely used on IBM mainframes

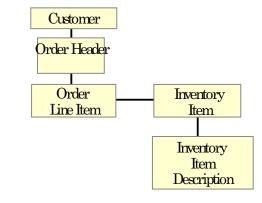
 examples: ATM transactions

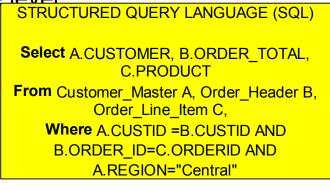
Source: "SQL: The Complete Reference", James R.Groff, Paul N.Weinberg, McGraw-Hill/Osborne 2002

Network Database

- extends hierarchical database structure
 - allows childs to have more than one parent
- 1971 standardization (named CODASYL)

Disadvantages of hierachical and network databases:


- Changing database structure typically required rebuilding the entire database
- Programs have to be written for every report


Relational Database Architecture

- Created to remove program maintenance of data
 - Invented by IBM, E.F. Codd's 12 rules
- Data Integrity, Relationships, Security, Business Rules
 - Managed by RDBMS, not applications
- Isolate Programmer from managing data on physical disk units
 - DBA's created to now manage at the database level
 (on most client/server RDBMS's)
- Concepts of RDBMS
 - Tables, Columns, Views, Indexes
 - Physical Files, Logical Files, Members
 - Referential Integrity
 - Triggers, Stored Procedures
 - Concurrency
- SQL (Structured Query Language)
 - The "open" RDBMS programming language
 - JDBC, ODBC, CLI, SQL, Querty gh Tools or poration 2008

Material may not be reproduced in whole or in part without the prior written permission of IBM.

The Business Problem

Power Systems

- The Relational Database Management Systems were not an effective manager of unstructured or semistructured data (documents, images, e-mails, engineering drawings, video clips, and other business formats):
 - Most of these data types remain outside the database in a file system
 - These files are often related to traditional data stored in the database
- Users want a content management system that integrates:
 - Management of the file and its associated data
 - Synchronizes updates, backup, recovery, and other functions across both the RDBMS and the file system

Object-Oriented DBMS

Power Systems

- in the 90th OO became popular
- research on OO databases
- no standardized query language like SQL
- not successful in the marketplace

IEM Object-Relational Databases Power Systems

- extends relational database model
- some object-oriented capabilities are added

Unstructered Datas

Power Systems

- Complex Objects
 - LOBs
 - Large Objects stored in table columns

Name	Address	Picture
John Doe	123 First Ave	

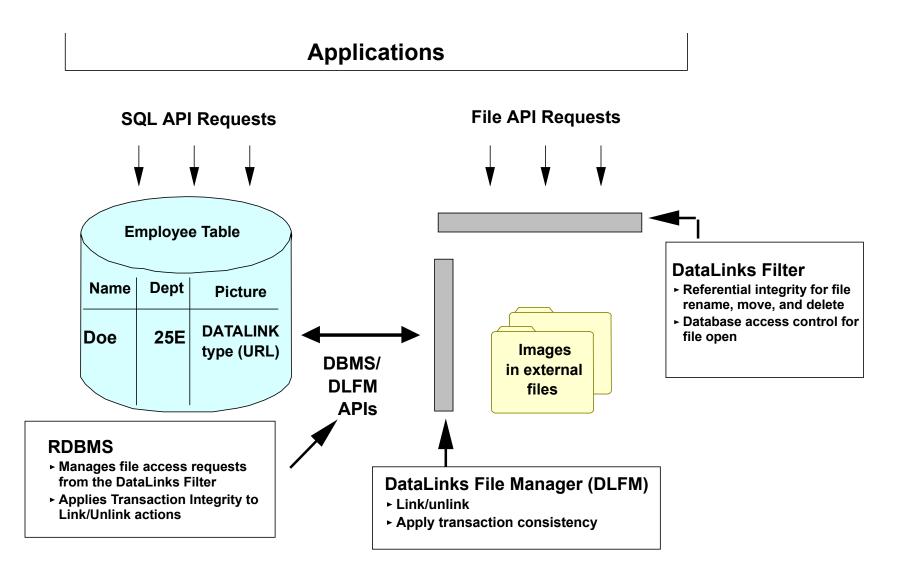
- DataLinks
 - Downloadable to PC Applications

Name	Address	Picture	
John Doe	123 First Ave	URL	


File System

Datalink

Power Systems


- The DataLink data type is one of the basic building blocks for extending the types of data that can be stored in database files
 - The DATALINK column holds information about an object, without actually containing the object itself
 - The data stored in the column is a pointer to the object
 - A Uniform Resource Locator (URL) is stored
 - The object can be anything (image file, voice recording, text file, and so forth)
 - The URL is used to resolve to the object
 - There is a relationship between the row and the object.

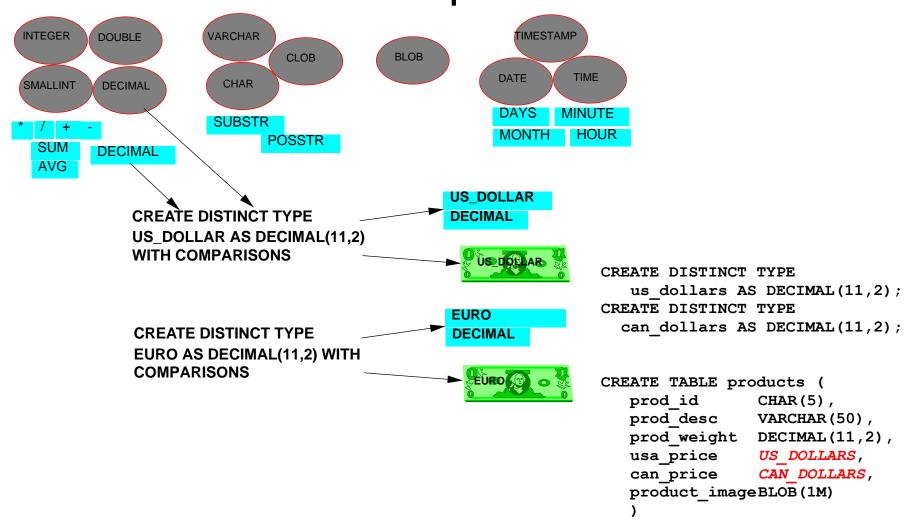
DataLinks Components

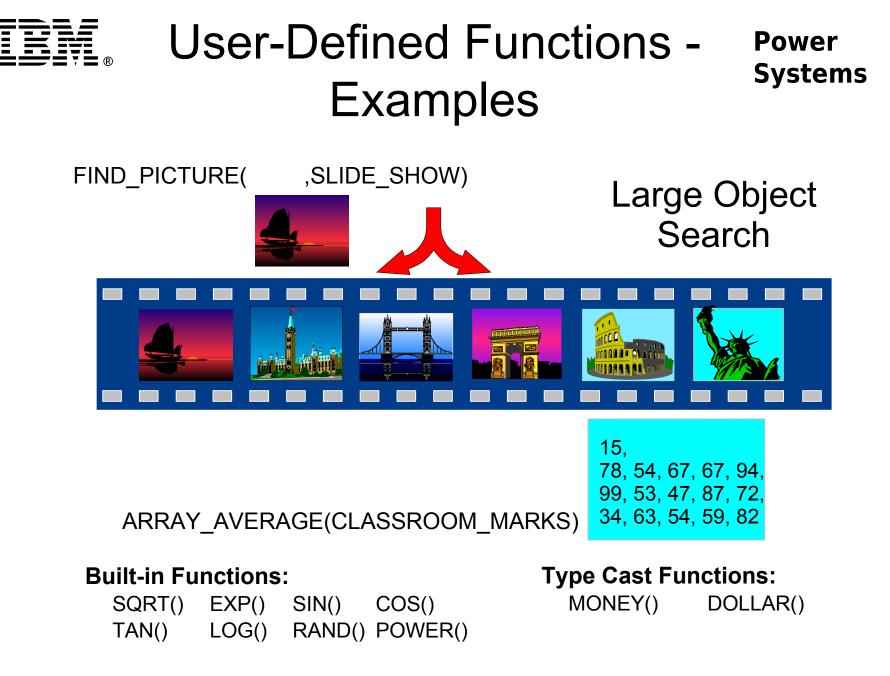
Power Systems

© Copyright IBM Corporation 2008

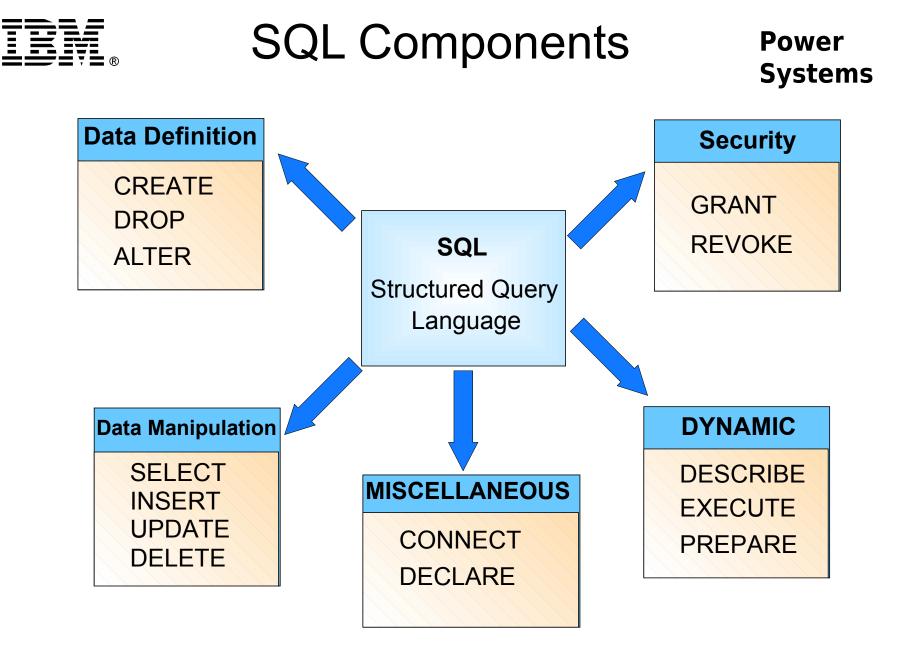
Material may not be reproduced in whole or in part without the prior written permission of IBM.

The Need for Large Objects Power (LOBs)


SOLD	ONHAND	RATING	ARTIST	TITLE	COVER	VIDEO	MUSIC	SCRIPT
234	59	PG-13	Arnold	The Exterminator				
13	45	R	Kevin	Dancing with Bulls				
1295	209	G	Glenn	101 Doll Imitations				
379	112	G	Buzz	Toy Glory				


- Provide support for Web-based multimedia applications
- Provide a built-in data type that can store a large amount of data
- There are three different types of data:
 - BLOB (Binary Large Object): For scanned documents, digital images, and so forth
 - CLOB (Character Large Object): Large character string data type
 - DBCLOB (Double Byte Character Large Object): Large double-byte character string data type

User-Defined Types -Example



Structured Query Language Power Systems

- Portability of code & skills
- Strategic database interface for industry & i5/OS
 - SQL required for certain functions & middleware
- J2EE architecture based on SQL interfaces
 - Data types: BLOB, CLOB, Datalink, ...
 - Auto-Incrementing Constructs: Sequence & Identity column attribute
 - Column-level Triggers
 - Encryption & Decryption functions
 - Encoded Vector Indices
 - InsteadOf Trigger

- ..

- SQL as a programming language can reduce total lines of code
- DB2 Symmetrical Multiprocessing parallel database processing

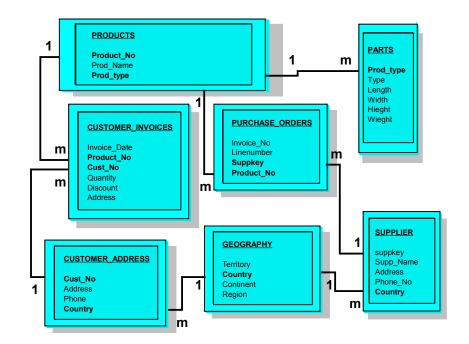
DBMS Architectures

- Enterprise DBMS
 - Designed for scalability and high performance,
 - very large databases
 - large number of concurrent user
 - multiple types of application
- Departmental DBMS
 - For small or medium-sized workgroups
- Personal DBMS
 - Single user environment
- Mobile DBMS
 - Specialized form of a departmental or enterprise DBMS
 - Needs synchronization for remote database changes

Therefore, every vendor have different products.

Types of Databases

Power Systems


- Transactional Databases
 - based on small changes to the database
 - transaction oriented
- Decision Support Databases
 - Data warehouse database
 - Data mart
 - Reporting database
- Hybrid Databases
 - a mixture of both

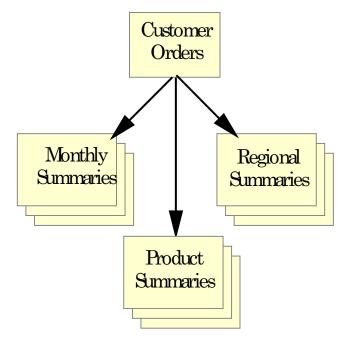
OLTP - Online Transaction Processing

• Online Transaction Processing is a "data handling method"

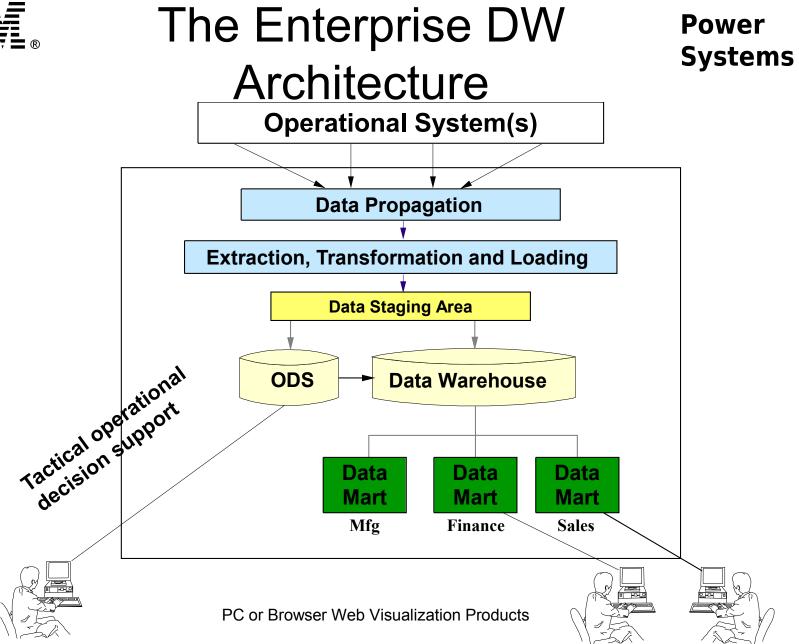
- Characteristics :
 - detail oriented
 - highly repetitive
 - end-users next action is predictable to a certain degree
- Examples
 - order entry
 - payroll applications
 - inventory management applications
 - ... all applications that support "day-to-day" business requirements

Power

Systems


OLAP - Online Analytical Processing

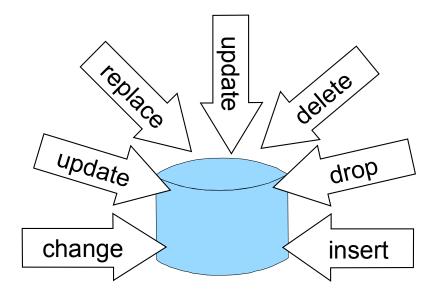
Power Systems

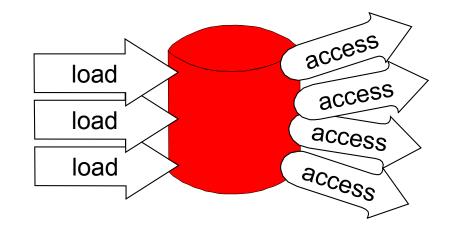

- OLAP databases are typically:
 - Replicated

summarized (de-normalized / highly indexed) and cleansed data created from operational transaction systems

- Placed on separate database server
- Refreshed on timed basis from operational transactions
- Multidimensional in nature read only databases
- Could be quite LARGE (several years of historical data)

© Copyright IBM Corporation 2008 Material may not be reproduced in whole or in part without the prior written permission of IBM.


26


OLTP versus OLAP Databases

OLAP

OLTP

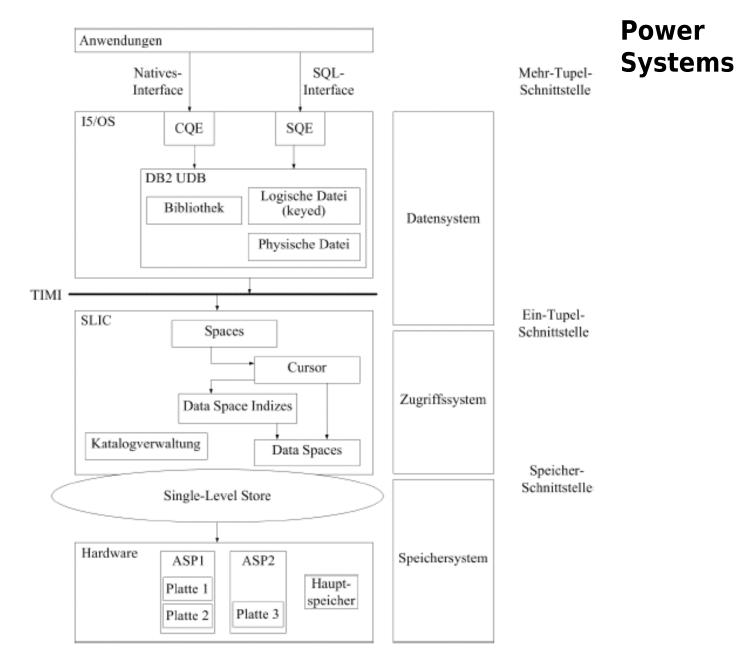
data is regularly updated on a record by record basis data is loaded into the data warehouse and is accessed there but is <u>not</u> updated

Power Systems

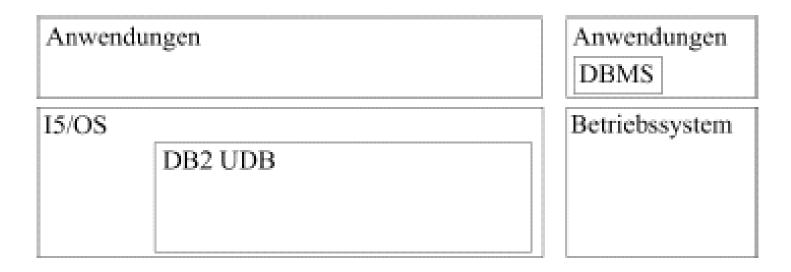
8.2 System i Integrated Relational Database Management System

DB2 UDB for IBM i

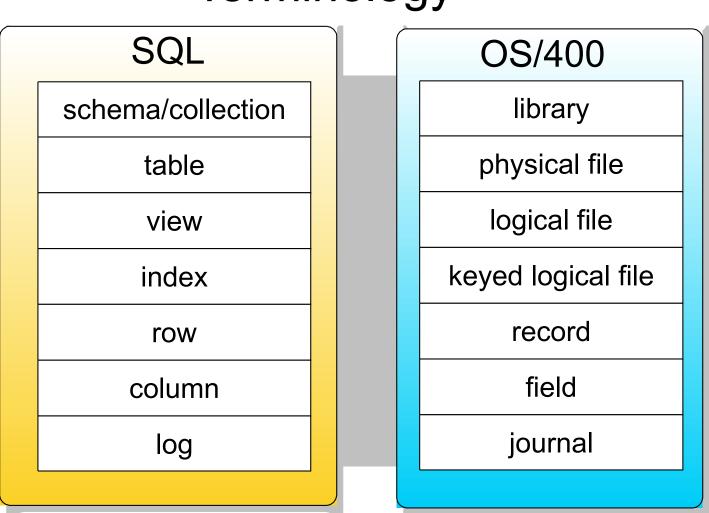
IBM i and DB2 UDB Family Power Systems


- Similarities
 - SQL Syntax
 - Universal Functionality
 - Open, Common Interfaces
 - DRDA, ODBC, JDBC, CLI
 - Common Tools and Middleware

- Differences
 - Not the same codebase
 - Some algorithms and technology is ported
 - Administration and Integration
 - i5/OS have a single system-wide database instance, no need for multiple database instances like other DB2's

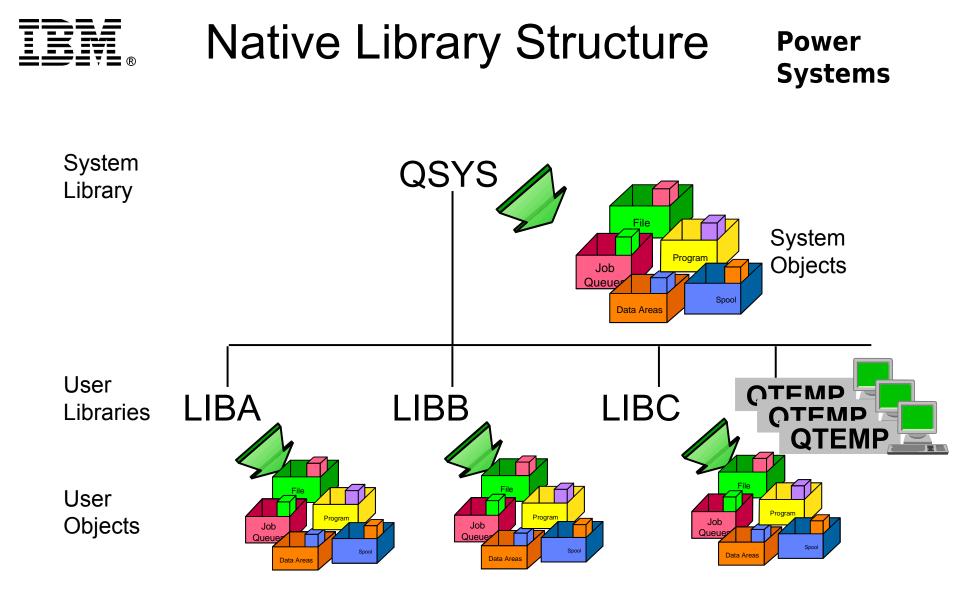


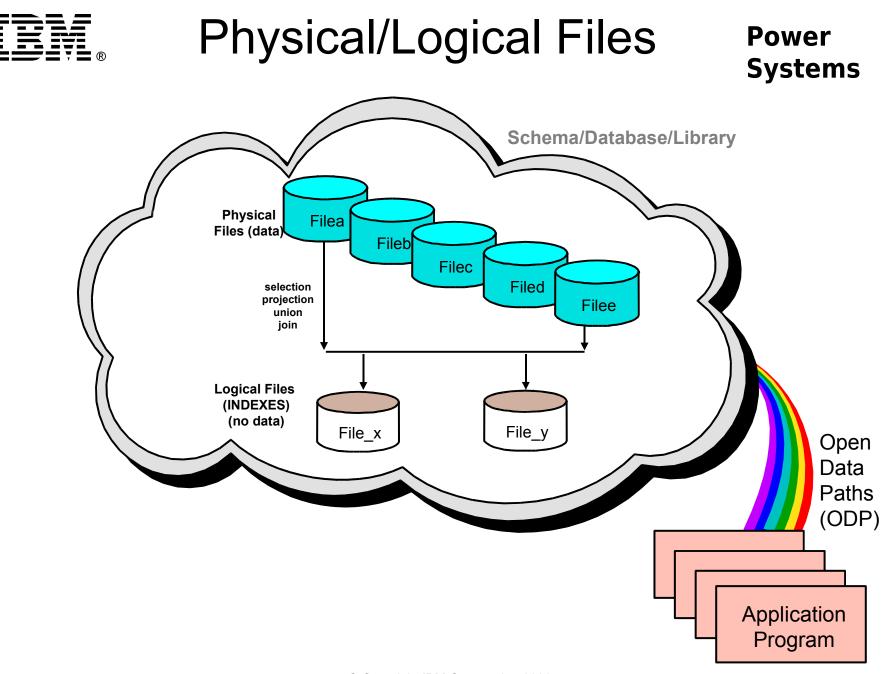
Power Systems


Power Systems

8.2.1 Native Database Implementation

Database Objects -Terminology

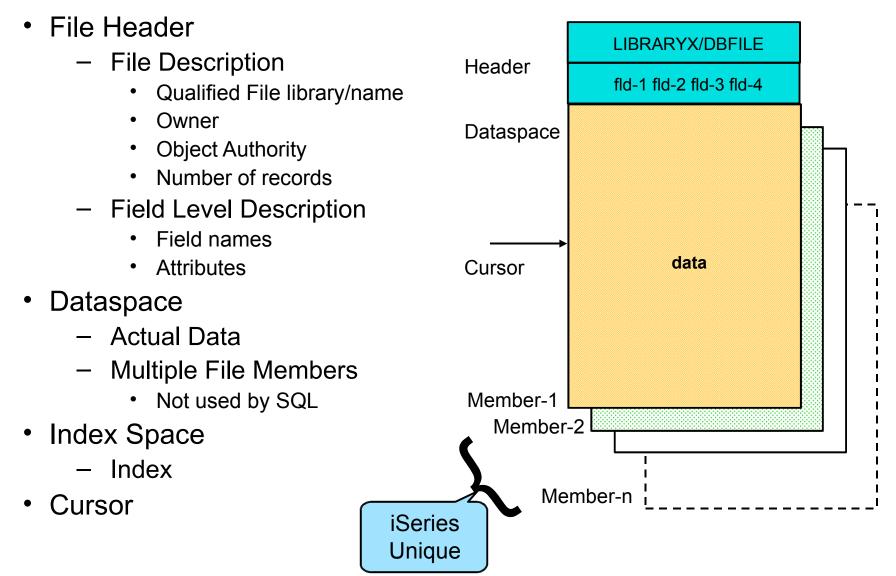




Terminology

SQL versus traditional file access terminology

SQL Term	Traditional File Access Term
Collection. Consists of a library, a journal, a journal receiver, an SQL catalog, and an optional data dictionary. A collection groups related objects and allows you to find the objects by name.	Library. Groups related objects and allows you to find the objects by name.
Table. A set of columns and rows.	Physical file. A set of records.
Row. The horizontal part of a table containing a serial set of columns.	Record. A set of fields.
Column. The vertical part of a table of on data type.	Field. One of more bytes of related information of one data type.
View. A subset of columns and rows of one or more tables.	Logical file. A subset of fields and/or records of up to 32 physical files.
Index. A collection of data in the columns of a table, logically arranged in ascending or descending order.	A type of logical file.
Package. An object that contains control structures for SQL statements to be used by an application server.	SQL Package. Has the same meaning as the SQL term.
Catalog. A set of tables and views that contain information about tables, packages, views, indexes, and constraints.	No similar object. However, the Display File Description (DSPFD) and Display File Field Description (DSPFFD) commands provide some of the same information that querying an SQL catalog provides.



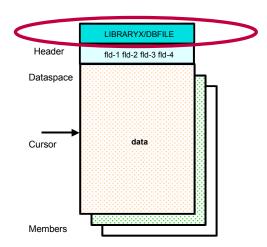
Physical File Structure

Power Systems

© Copyright IBM Corporation 2008

File Members

Power Systems


1		
	Display Phy	ysical File Member
Display Physica	File : CUSTOMERS	Library : ERPDATA
File : CUSTOMERS	Member : CUSTCDT	Record : 1
Member : SECOND	Control	Column : 1
Control	Find	
Find	*+1+2+3+.	
*+1+2+3+4	938472Henning G K4859 Elm Ave Dallas	TX752175000300370000000
918374Davon A C249 North St LondonTX75	839283Jones B D21B NW 135 StClay	NY1304104001010000000000
833245Lee D S21B NW 135 StClay NY13	392859Vine S SPO Box 79 Broton	NT0504607001043900000000
123859Jenner T PPO Box 79 BrotonVT05	938485Johnson J A3 Alpine Way Helen	GA3054599992398750003350
345485James S A3 Alpine Way Helen GA30	397267Tyron W E13 Myrtle Dr Hector	NY1484110001000000000000
393457Peters D A13 Myrtle Dr HectorNY14	389572Stevens K L208 Snow PassDenver	CO8022604001005875000150
323472Wang C M208 Snow PassDenverCO80	846283Alison J S787 Lake Dr Isle	MN5634250003001000000000
889900Hoover E J787 Lake Dr SydneyMN56	475938Doe J W59 Archer Rd Sutter	CA9568507002025000010000
423438HumphreyH W59 Archer Rd SutterCA95		WY8260999992000000000000
693829Thomas A N3 Dove CircleCasperWY82	593029WilliamsE D485 SE 2 Ave Dallas	TX7521802001002500000000
593029WilliamsE D485 SE 2 Ave BangorTX75	192837Lee F L5963 Oak St Hector	NY1484107002048950000050
192837Lee F L5963 Oak St ForestNY14	583990Abraham M T392 Mill St Isle	MN563429999305000000000
Display	Physical File Member	
		LIBRARYX/DBFILE
File : CUSTOMERS	Library : ERPDATA	Header
Member : THIRD	Record : 1	fld-1 fld-2 fld-3 fld-4
Control	Column : 1	Dataspace
Find		
*+1+2+3+.		
323472Wang C M208 Snow PassDenver	CO8022604001005875000150	
889900Hoover E J787 Lake Dr Sydney		
423438HumphreyH W59 Archer Rd Sutter	Cursor data	
693829Thomas A N3 Dove CircleCasper		
593029WilliamsE D485 SE 2 Ave Bangor'		
192837Lee F L5963 Oak St Forest	NY1484107002048950000050	
583990Abraham M T392 Mill St Island		
	MN563429999305000000000 OF DATA *****	

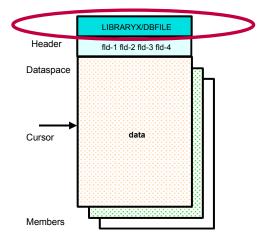
© Copyright IBM Corporation 2008

File Information (1)

- File Description Header
 - Explicit File Name
 - Library Name
 - File Name (10 characters)
 - Alternative File Name (20 characters)
 - File Type
 - Data -
 - Source program code
- Database Attributes
 - File Definitions
 - Externally Described
 - Column (or Field) Level Specifications
 - Field information stored with file
 - Program Described
 - Row (or Record) level Description
 - Field information within program(s)
 - File Creation Date
 - File Size Limits
 - Record Length
 - Initial records
 - Size of increment
 - Number of increments

Power

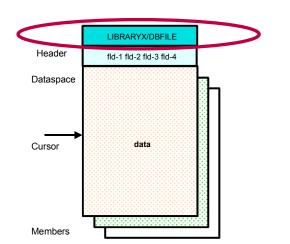
Systems


DSPFD Command

© Copyright IBM Corporation 2008

File Information (2)

- Database Attributes
 - Number of members
 - Maximum
 - Current
- Reuse Deleted Records
- Force Write to Disk
- File Activity
 - Number
 - Opens/Closes
 - Update/Delete Operations
 - Date of Last
 - Change
 - Save
 - Restore
- File Member Information
 - Name/Creation Date
 - Last Update (date/time)
 - Number or Records



Feld Field Description - Record Power Systems

- Columns (Field) Information
 - -Field Name
 - -Data Type
 - Character
 - •Numeric
 - Binary
 - -Length
 - -Buffer Positions
 - -Usage
 - Input/Output
 - -Column Heading

🕮 ERPDATA.CUSTOMERS - Teamlpr3.rchland.ibm.com(S105w11m)								
Table Columns Key Constraints Foreign Key Constraints Check Constraints Materialized Query Partitioning								
Column Name	Short Name	Data Type	Length	Nullable	Default Value	Text		Add
CUSNUM	CUSNUM	NUMERIC	6,0	No	0	Customer nur	nber field	
LSTNAM	LSTNAM	CHARACTER	8	No		Last name fie	ld	Remove
INIT	INIT	CHARACTER	3	No		First and mide	de initial field	Deffetter
STREET	STREET	CHARACTER	13	No		Street addres	s field	Definition
CITY	CITY	CHARACTER	6	No		City field		Move Up
STATE	STATE	CHARACTER	2	No		State abbrevi	ation field	wove op
ZIPCOD	ZIPCOD	NUMERIC	5,0	No	0	Zip code field	1	Move Down
CDTLMT	CDTLMT	NUMERIC	4,0	No	0	Credit limit fie	ld	
CHGCOD	CHGCOD	NUMERIC	1,0	No	0	Charge code	field	Browse
BALDUE	BALDUE	NUMERIC	6,2	No	0	Balance due	field	
CDTDUE	CDTDUE	NUMERIC	6,2	No	0	Credit due fie	ld	
4							•	
Show SQL					Γ	ок	Cancel	Help ?

DSPFFD Command (Green Screen)

© Copyright IBM Corporation 2008

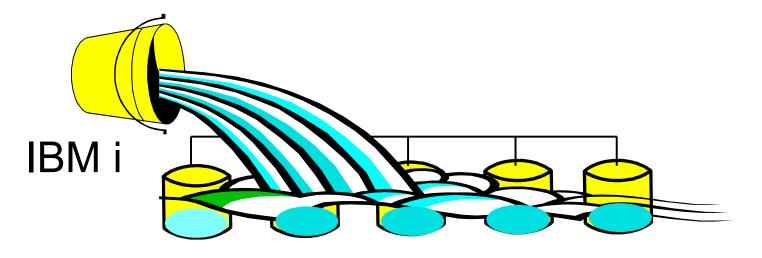
Create a Physical File with Power DDS

Field Reference File :

R	FLDREFP			
	PERSNR	5S	0	COLHDG('Personal-' 'nummer')
	NAME	1000		VARLEN (36)
				COLHDG('Name')
	GEBDAT	L		COLHDG('Geburts-' 'datum')
	ABTLG	4S	0	COLHDG('Abteilung')
	GEHALT	7	2	COLHDG('Gehalt') ALWNULL
	• • •			

Physical File Description with DDS :

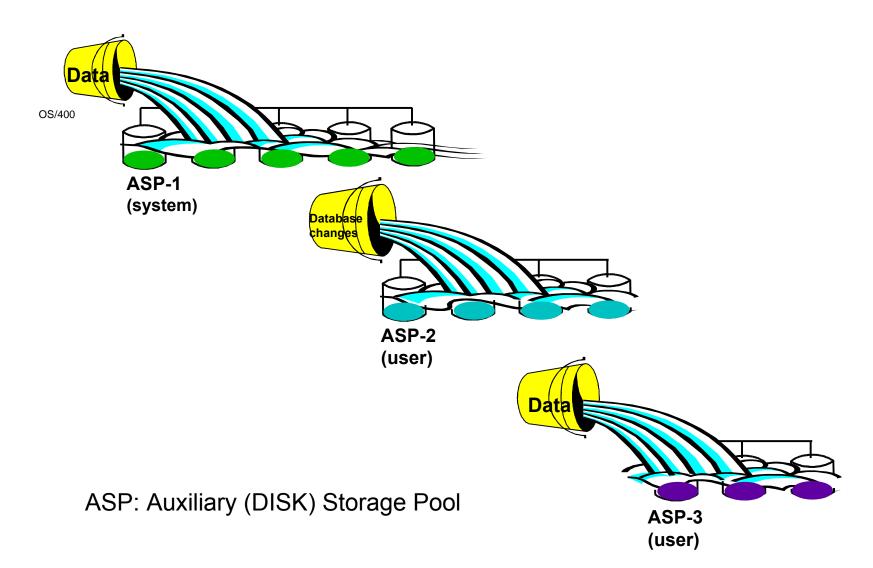
			REF (FLDREFP)	
R	PERSTPF1			
	PERSNR	R		
	NAME	R		
	GEBDAT	R		
	ABTLG	R	ALWNULL	
	GEHALT	R		



Power Systems

8.2.2 IBM i Data Retrieval

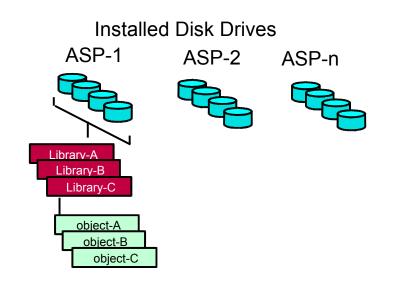
Disk Storage Management Power Systems



- All data is spread across available disk arms
 - Optimum performance automatically
- Not all information is necessarily contiguous
 - Improved performance
 - Balanced disk arm utilization
- Optional rebalancing
 - space/arm utilization
- Information accessed by name not hardware address
- Minimal Database Administration

Multiple ASPs

Power Systems


© Copyright IBM Corporation 2008 Material may not be reproduced in whole or in part without the prior written permission of IBM.

46

Impact on Data Retrieval

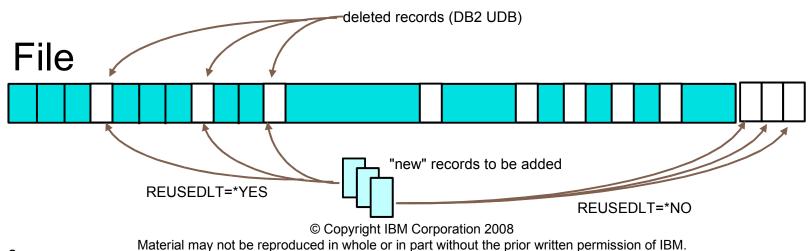
- An ASP can (does) span multiple disks
 - Contains Multiple Libraries
- Data Objects not bounded by Disk Volumes
 - Data may span multiple disk drives
- Application Database
 - Multiple Libraries
 - Multiple Objects
 - Physical Files
 - Logical Files
 - Data Areas
 - Data Queues
 - And so forth
 - IFS Objects
 - Multiple directories
 - Sub-directories

Physical Files (Data)

Power Systems

- Actual Information Stored in DB2 UDB Physical Files
 - Type *DATA (versus *SOURCE)
- Specify
 - File Name
 - library-name>/<file-name>
 - Data held in <member-name>
- Number of Members in file
 - Data Format
 - Record (row) Length
 - Field (column) Organization
 - Type
 Character
 Decimal
 Binary and so forth
 - Length
 - Reuse Deleted Records
 - REUSEDLT = *YES/*NO
 - Records to force a write
 - FRCRATIO=*NONE/<value>

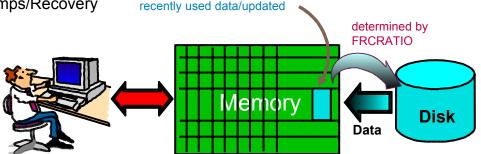
© Copyright IBM Corporation 2008


Deleted Records

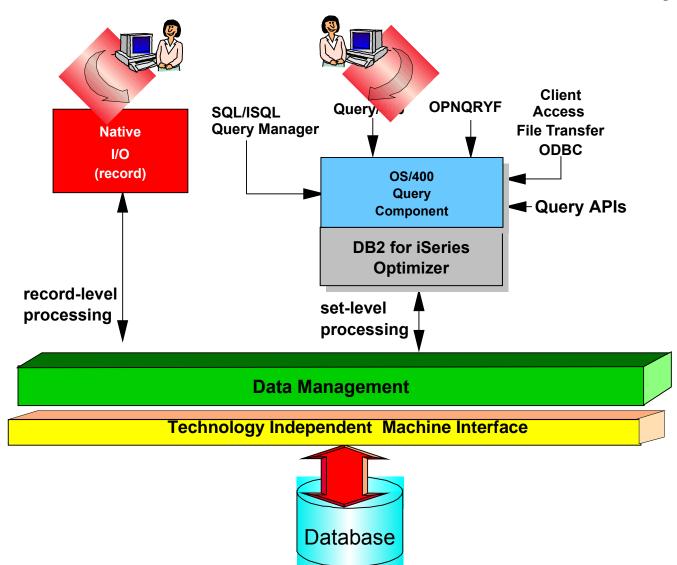
Power Systems

- Through DBMS Support (DB2 UDB)
 - REUSEDLT = *YES
 - Flagged by DB2 UDB
 - Records not made available to applications on *READ
 - Parameter REUSEDLT in CRTPF/CHGPF
 - *YES
 - Space freed by deletion of a record is available for additions (new records)
 - *NO

Space is not freed when a record is flagged for deletion


- Space "freed" by record deletion
 - File "compression" possible
 - Reorganize Physical File Mbr (RGZPFM command)
- Reduces File size (dependent on number of deletions)

Force Records to Disk

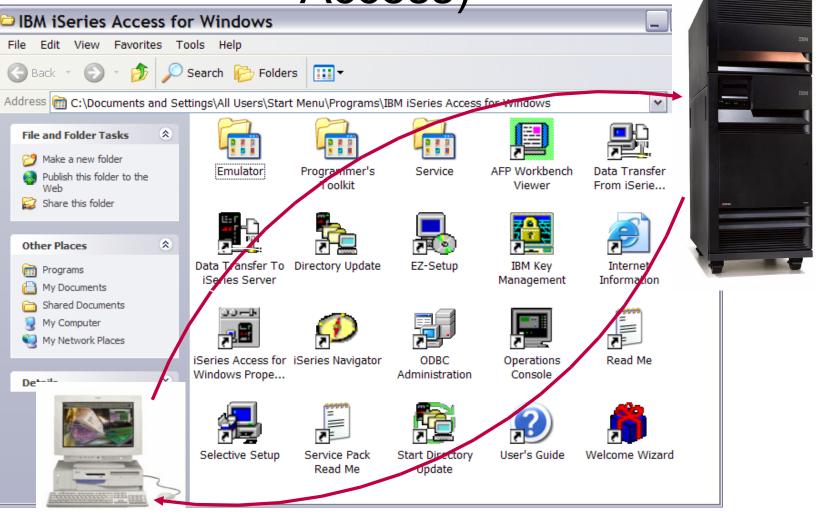

- Arises from Single Level Storage Implementation
 - Frequently access pages tend to remain in memory
 - Applies to ALL OBJECTS
- Override for Physical Files
 - Data written to Disk determined by parameter FRCRATIO
 - *NONE System Managed
 - <value>..... Number of Records
 - Added/Updated
- Consider Impact of Sudden Power Outage!
 - Memory is Volatile
 - Data loss?
 - Battery Failure
 - Memory Dumps/Recovery
- At next IPL

Accessing the Database

Power Systems

© Copyright IBM Corporation 2008 Material may not be reproduced in whole or in part without the prior written permission of IBM.

Module 8



Data Access

- Software interacting with DB2 UDB for i5/OS
 - Applications
 - High Level Languages
 - Application Packages
 - iSeries Query Tools
 - GUI
 - iSeries Access for Windows (5722-XE1)
 - iSeries Navigator
 - Character-based interface
 - Query Manager (5722-QU1)
 - DB2 Query Manager (5722-ST1)
 - OS/400 Commands Copy File (CPYF) Create Duplicate Object (CRTDUPOBJ) Display File (DSPPFM)
 - Non-IBM Tools

Power Systems

More information through Hands-on Lab Exercises!

CPYF

_		
	Copy File (CPYF)	
	Type choices, press Enter.	
	From file	ile> Name
	Library <libra< th=""><th>ary> Name, *LIBL, *CURLIB</th></libra<>	ary> Name, *LIBL, *CURLIB
	To file	file> Name, *PRINT
	Library	ary> Name, *LIBL, *CURLIB
	From member *FIRST	Name, generic*, *FIRST,
	*ALL To member or label *FIRST	Name, *FIRST, *FROMMBR
	Replace or add records *NONE	*NONE, *ADD, *REPLACE
	Create file*NO	*NO, *YES
	Print format *CHAR	*CHAR, *HEX

© Copyright IBM Corporation 2008

Power Systems

8.2.3 To DBA or not to DBA?

Follow-On Advantages of i5/OS Architecture

Database Administrator Tasks

Power Systems

Traditionally, a DBA is a <u>database administrator</u> performing tasks such as...

- Installing the RDBMS
- Configuring the RDBMS
- Starting and Stopping the RDBMS
- Allocation of disk space for database objects
- Partitioning and balance of disk drives
- Reorganizing / rebalancing of system index structures
- Maintaining statistics used in query optimization
- Logical and physical data modeling
- Determining and implementing indexing strategies
- /User administration and security
- Monitoring and tuning database access and processes

The DBA

Power Systems

- Traditionally, DBAs are separated from the application development community
 - Technically different roles and responsibilities
 - Organizationally different roles and responsibilities

What is a DBA ...?

Power Systems

What's the difference between...

- Database Administrator
- Database Architect
- Database Analyst
- Data Steward
- Data Owner

Why are they needed...

- Technical reasons
- Organization reasons
- Philosophical reasons
- Historical reasons

Database Skill/Tasks

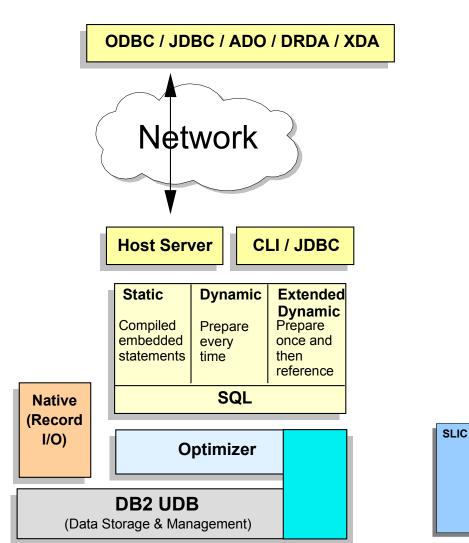
DB2 UDB for i5/OS
Completely Automated
Integrated Utility (Parallel)
Integrated GUI
Integrated GUI
Integrated GUI
Integrated GUI, DB2 OLAP,
and 3rd Party Tools (ERwin,S-Designer)
insure/SQL
insure/SQL
Multiple IBM and 3rd Party Products

Integrated GUI - iSeries Navigator insure/SQL by Centerfield Technologies

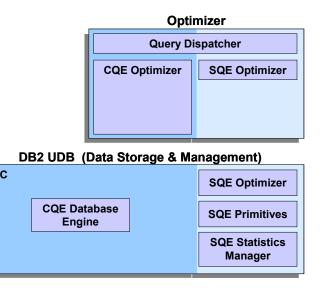
Do you need a DBA on IBM i? Systems Maybe...

Consider...

- Database Analyst or Architect (not administrator)
- Technical issues of moving to a data-centric world
 - Business logic moving into the database
 - •More data, used in more places, by more clients
- Organizational issues
 - Division of work
 - Level and type of knowledge required is specialized


Power Systems

8.2.4 Performance



System i Database Architecture

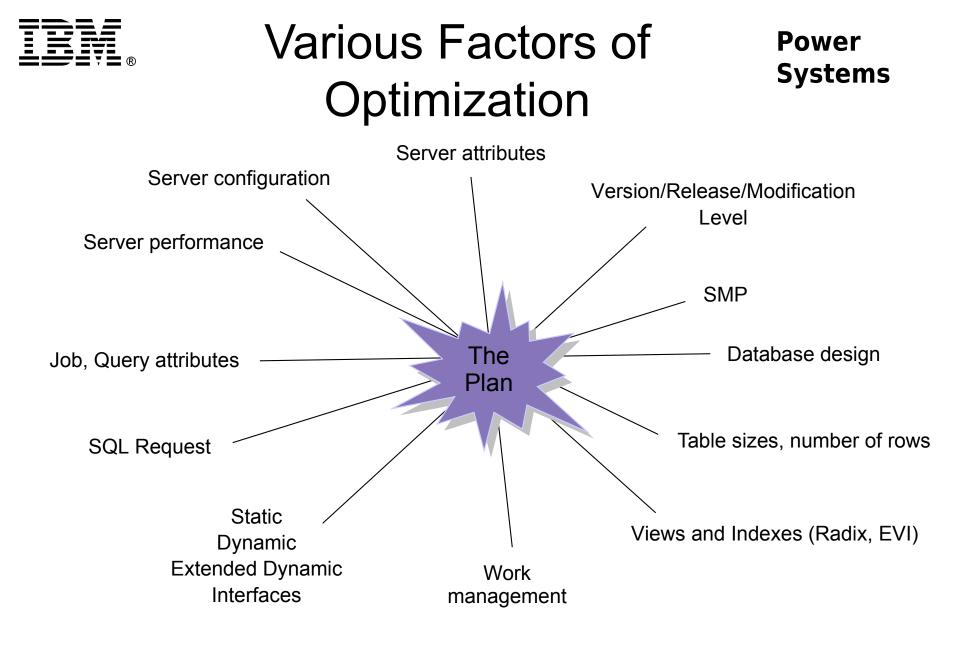
Power Systems

The "classic" optimizer and database engine merged to form the SQL Query Engine and much of the work was moved to SLIC.

© Copyright IBM Corporation 2008

Five Factors of DB Performance

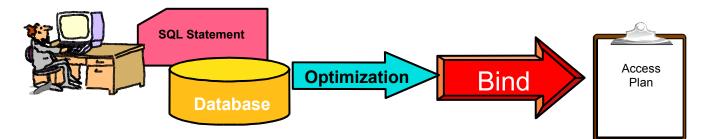
- Workload
 - OLTP, OLAP, ad-hoc queries, system commands
 - Can fluctuate drastically
- Throughput
 - Overall capability to process data
 - CPU speed, I/O speed, parallel capabilities
- Resources
 - Hardware- and software tools
 - Database kernel, disk storage, RAM, cache, microcode
- Optimization
 - Query optimization is primary accomplished internal
 - SQL formulations, index strategy and database parameter
- Contention
 - Condition, where two or more components are attempting to use a single resource in a conflict way
 - As contention increases, throughput decreases

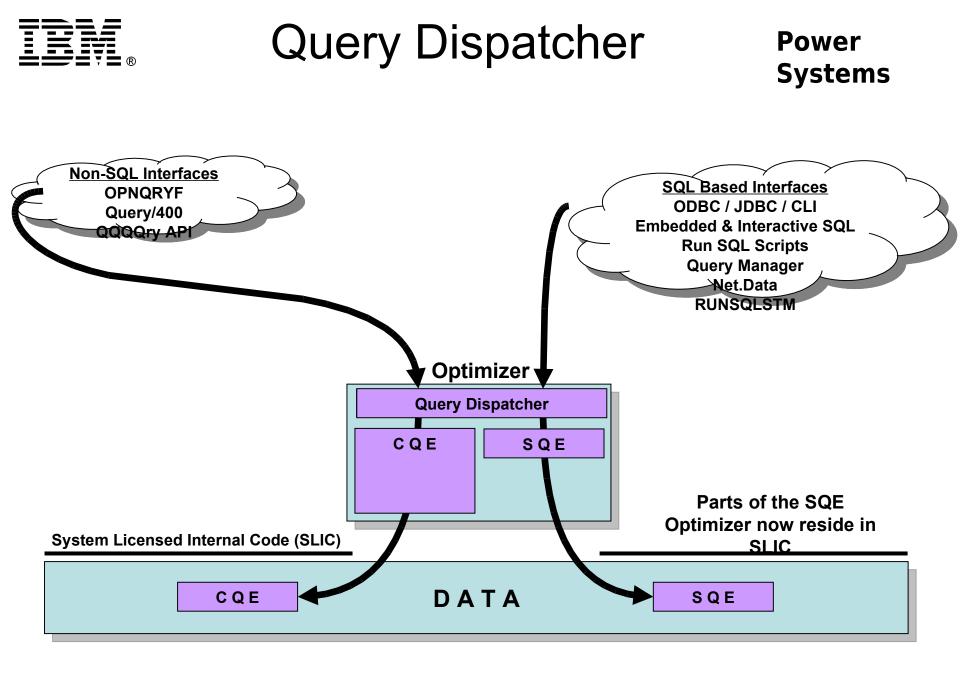

© Copyright IBM Corporation 2008

Power Systems

Therefore, database performance can be defined as the optimization of resource use to increase throughput and minimize contention, enabling the largest possible workload to be proceed.

* Source: Craig S. Mullins, Database Administration - The Complete Guide to Practices and Procedures

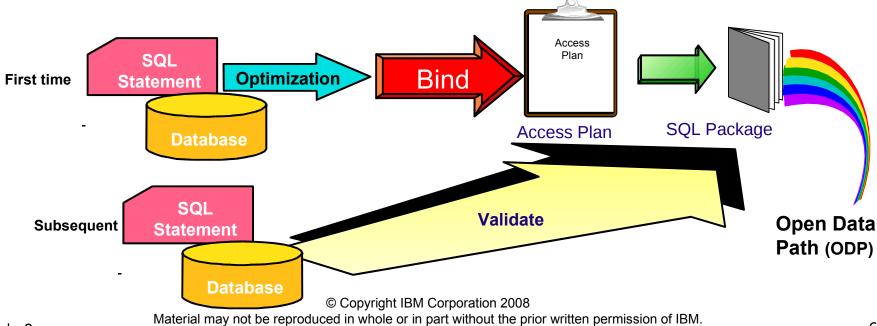




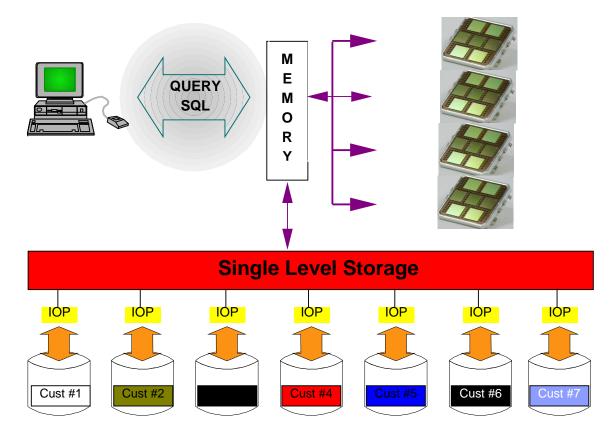
SQL Optimizer

Power Systems

- Why?
 - Improved Database performance
 - Identify technique used to implement query
 - Selects most efficient technique
- Access Plan
 - Internal structure defining method to process SQL statement
 - Created during SQL parse, syntax check
- · Optimal access method selection based on
 - Implementation cost
 - SQL Statement
 - Current state of the database
 - Indexes/File Sizes



© Copyright IBM Corporation 2008


SQL Packages

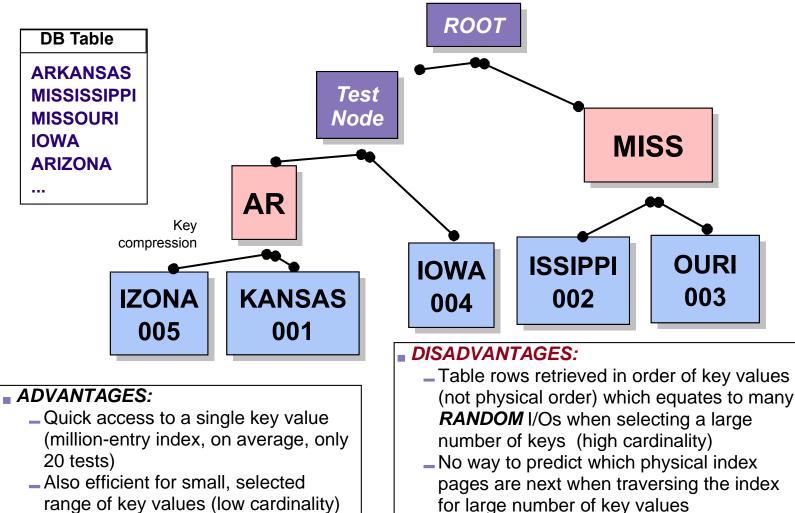
- IBM i Extended Dynamic SQL Support
 - Control structures used to execute SQL statements
 - Access Plans stored in *SQLPKG object
 - Improves Performance
 - IBM i commands : CRTSQLPKG, DLTSQLPKG
 - Dynamic re-optimization
 - File size
 - New/Deleted indexes

Parallelism

- Parallel table scan
- Parallel index scan
- Parallel hash join
- Parallel hash group by
- Parallel index build
- Parallel Data Load (Import PTF)
- Parallel index ANDing/ORing of dynamic bit maps
- Parallel Data Load (Export PTF)
- Parallel data load
- Parallel index maintenance
- Parallel Encoded Vector Index

Indexing

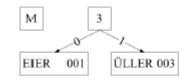
- Binary Radix Tree
- Bitmap Index
- Encoded Vector Index
- When will be indexes created?

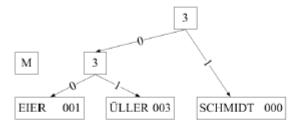


Binary Radix Index

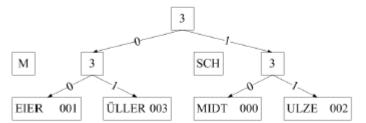
- Key values are compressed
 - Common patterns stored once
 - Unique portion stored in "leaf" pages
 - Positive impact on size and depth of the "tree"
- Algorithm used to find values
 - Binary search
 - Very efficient process to find a unique value or small range of values
 - Modified to fit the data structure
 - Used to materialize a bitmap or relative record number (RRN)
- Maintenance
 - Index data is automatically spread across all available disk units
 - Tree is automatically "rebalanced" to maintain an efficient structure
 - No "index reorganization" required

Binary Radix Index




1. Add Meier 001:

MEIER 001


2. Add Müller 003:

3. Add Schmidt 000:

4. Add Schulze 002:

5. Add Zuse 004:

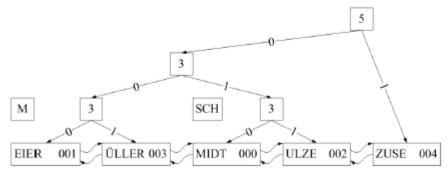
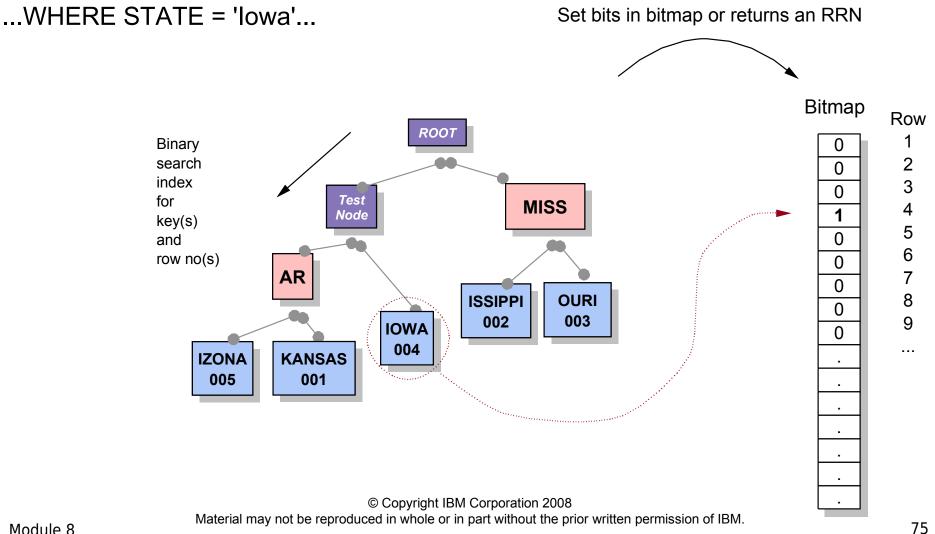


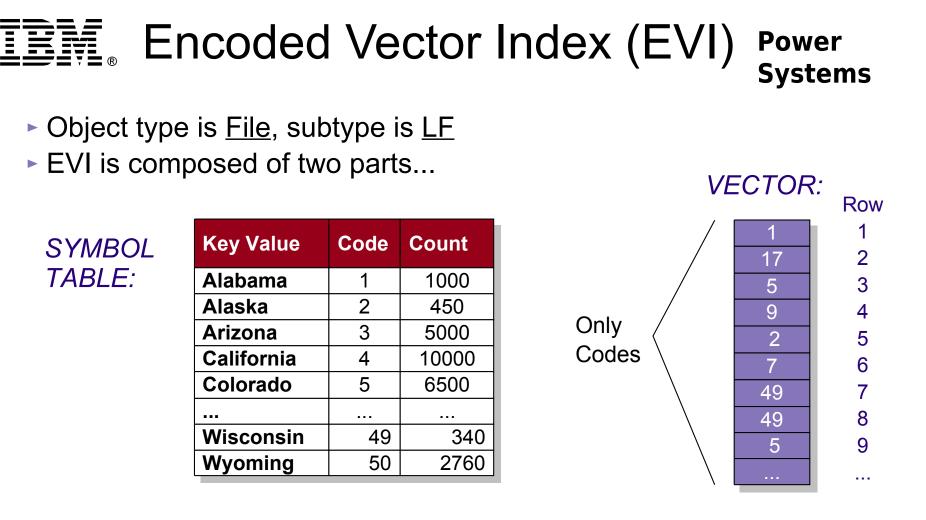
Abbildung 13: Aufbau binärer Radix-Baum Material may not be reproduced in whole or in part without the prior written permission of iBM.

Vergleich zu B* Baum

1. Add Meier 001: MEIER 001 2. Add Müller 003: 001 MÜLLER 003 MEIER Add Schmidt 000: MÜLLER 003 MEIER 001 MÜLLER 003 SCHMIDT 000 Add Schulze 002: MÜLLER 003 MEIER 001 MÜLLER 003 SCHMIDT 000 SCHULZE 002 5. Add Zuse 004: MÜLLER 003 SCHULZE 002 ZUSE 004 MEIER 001 MÜLLER 003 SCHMIDT 000 SCHULZE 002


- Baumhöhe:
 - Der Radix-Baum ist von Natur aus nicht balanciert, wogegen beim B*-Baum alle Blätter den gleichen Abstand zur Wurzel haben
- Aufbau:
 - Während beim Radix-Baum lediglich ein Bit an einer vorbestimmten Stelle eines Bitstrings auf 0 oder 1 geprüft wird, muss beim B*-Baum jede Page, deren Größe von der Ordnung k des Baumes abh"angt, von links nach rechts nach einer bestimmten Relation (z. B. <=) geprüft werden.
- Storage:
 - B* : jeder Knoten eine Page
 - Radix: Page enthält Teilbäume

Bitmap Index



Given an index on table EMPLOYEE keyed on STATE...

Encoded Vector Index (EVI) Power Systems

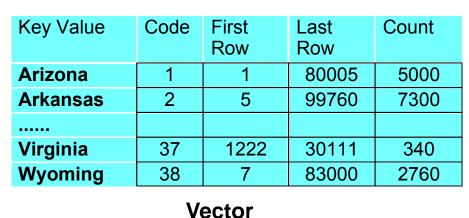
- Index object for delivering fast data access in analytical query and reporting environments
 - Advanced technology from IBM Research, that is a variation on bitmap indexing
 - Complement to radix index (keyed logical file or SQL index)
 - Easy to access data statistics improve query optimizer decision making
 - Used to materialize a bitmap or relative record number (RRN) list
 - Easy to maintain

Symbol table contains information for each distinct key value. Each key value is assigned a unique code

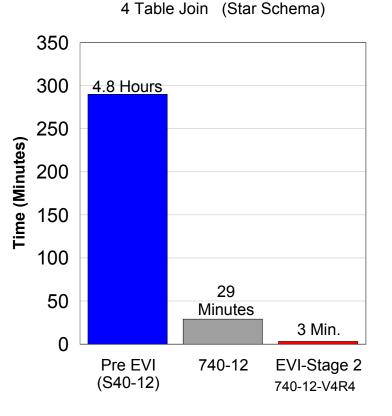
- Code is 1, 2, or 4 bytes - depending on number of distinct key values

 Rather than a bit array for each distinct key value, the index has <u>one</u> array of codes (a.k.a., the Vector)

© Copyright IBM Corporation 2008



Encoded Vector Indexing


Power Systems

New type of index that can significantly improve performance, especially for star schema

- ▶ 10% to 30% faster index builds
- ► 1/3 to 1/16 the size
- 1/2 the time for index scans
- 1/3 the time for bit map generation

Symbol Table

350 GB Table Query

Row 1 Row 2

13

12

28

2

17

38

2

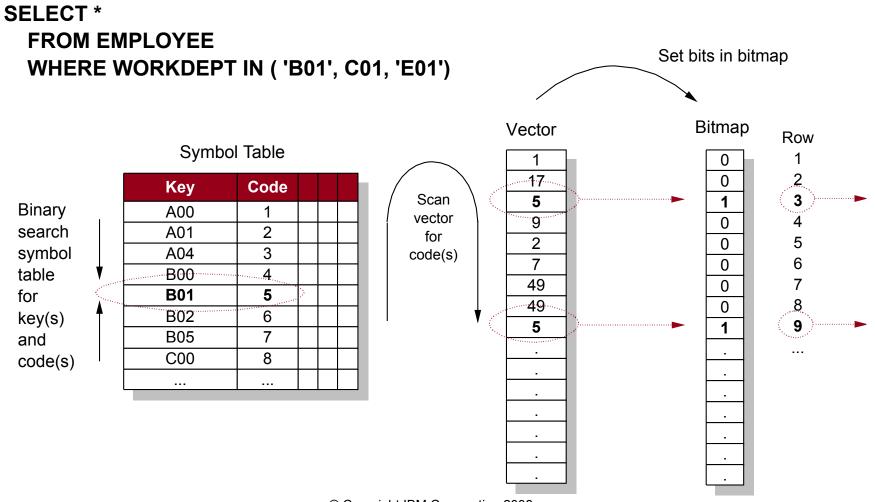
26

© Copyright IBM Corporation 2008

33

Material may not be reproduced in whole or in part without the prior written permission of IBM.

Module 8


78

EVI Example

Given an EVI on table EMPLOYEE keyed on WORKDEPT...

© Copyright IBM Corporation 2008

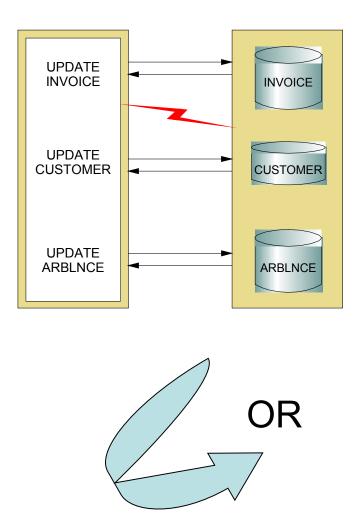
Indexing Strategy

- You must create some indexes
 - Statistics
 - Implementations
- Proactive
 - Create indexes over primary, foreign key columns and dependent columns
 - Create indexes for selection and joining
 - Create indexes for selection, grouping and ordering
- Reactive
 - Create indexes based on optimizer feedback
 - Visual Explain
 - Database monitors
 - Joblog messages
- Create indexes based on optimization, implementation, system resources and performance

Power Systems

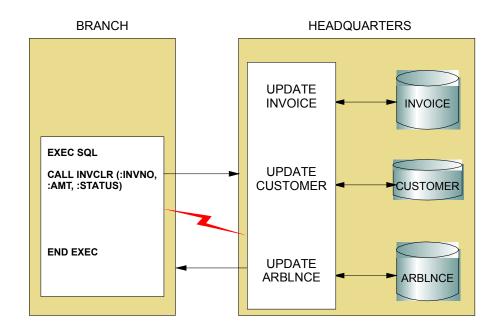
8.3 Application Development with SQL

© Copyright IBM Corporation 2008 Material may not be reproduced in whole or in part without the prior written permission of IBM.


SQL Packaging

 Database Manager SQL parser and runtime support Query Management Several SQL APIs Call Level Interface Performance Tools RUNSQLSTM 	File Edit View Bun VisualExplain Options Conflection Help Image: SQL statement examples: /* Enter one or more SQL statements separated by semicolons */ call ol38v2col/listproc No Charge - Run History - > call ol38v2col/listproc Statement ran successfully
 DB2 UDB for iSeries Query Manager and	Ready
SQL Development Kit (5722-ST1) STRSQL SQL Preprocessors Query Manager SQL REXX Interface	Licensed Program

Stored Procedure


Power Systems

An SQL "Program" that contains:

- HLL Program with or without embedded SQL
- SQL Language
- Stored Procedure Created by CREATE PROCEDURE
- Can pass parameters
- Can return parameters, result set

Widely used in Client / Server applications to reduce traffic

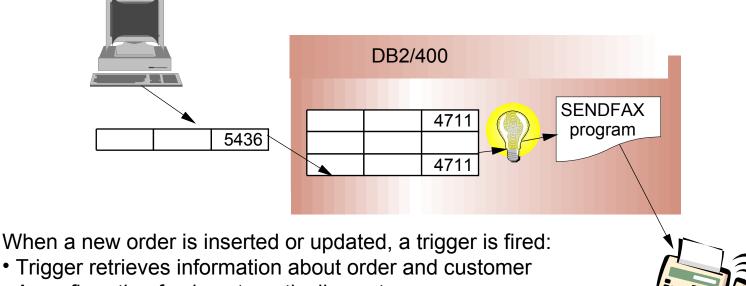
Trigger

Power Systems

Application-independent

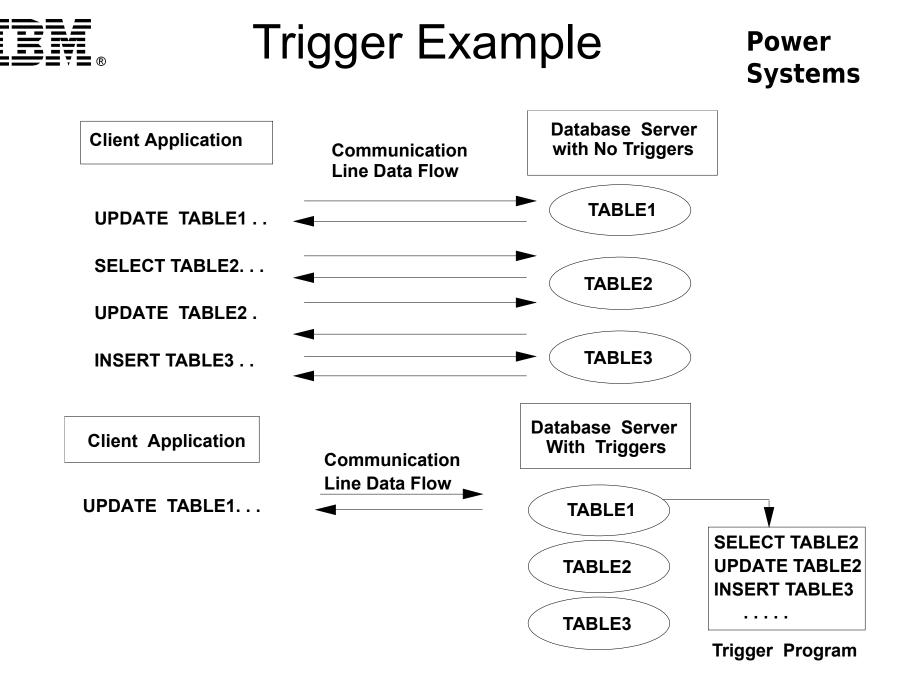
•Written once; used by many Activated by database manager when operations performed on database

•'Fired' by specified database operations and take action written in trigger


Interface-independent

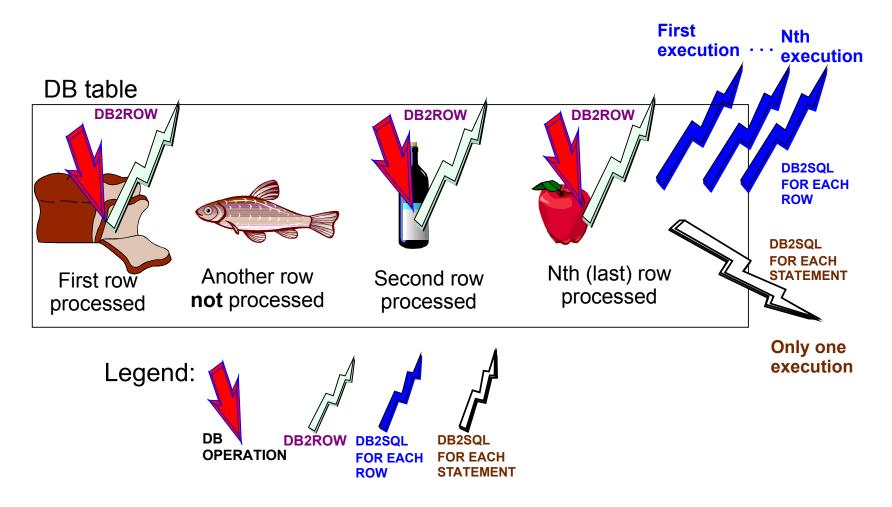
Triggers:

- •Enforce business rules
- •Enforce data validation and audit trail
- •Preserve data consistency


Triggers versus Stored Procedures

- •Triggers invoked by database events
- •Stored procedures invoked by application CALL

• A confirmation fax is automatically sent


© Copyright IBM Corporation 2008

© Copyright IBM Corporation 2008

Trigger Mode: DB2ROW versus Power DB2SQL

• When are the different modes of trigger that are fired?

© Copyright IBM Corporation 2008 Material may not be reproduced in whole or in part without the prior written permission of IBM.

Power Systems

8.4 Scalability

Scalability of a DBMS

Power Systems

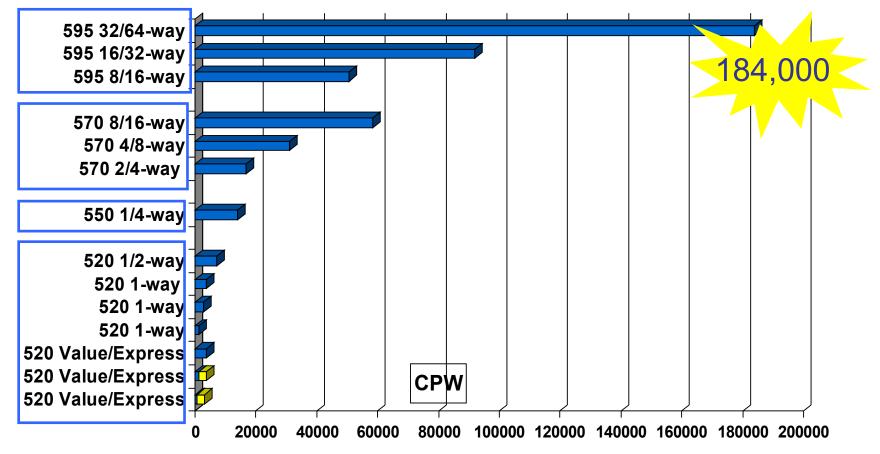
Capacity to meet increasing requirements

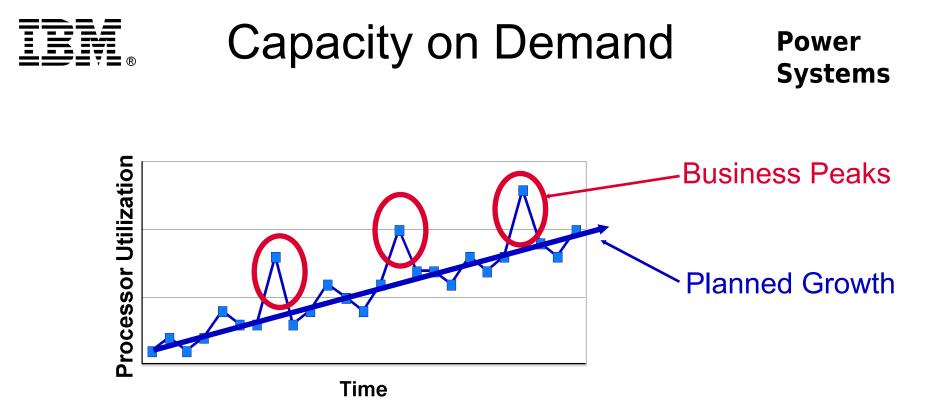
- Often caused by business factors
 - Numbers of user
 - Data volume
 - Transaction volume and complexity
- Depends on
 - Hardware
 - Operating system
 - Database configuration or design
- May not affect application design and code
 - "think big, start small" approach

Vertical and Horizontal Scaling

Power Systems

- Vertical scaling
 - typically refers to adding more processors and storage to an SMP to pump up processing capability
 - this form of scaling employs only one instance of the operating system
- Horizontal scaling
 - usually refers to tying multiple independent computers together to provide more processing power.
 - typically implies multiple instances of operating systems, residing on separate servers




Power Systems

9.1.1 Vertical Scaling

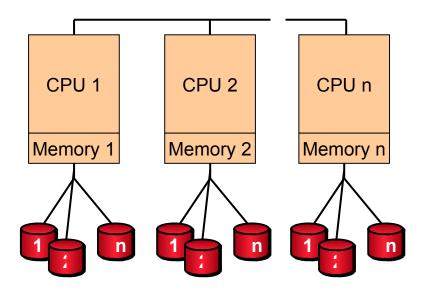
System i5 CPW

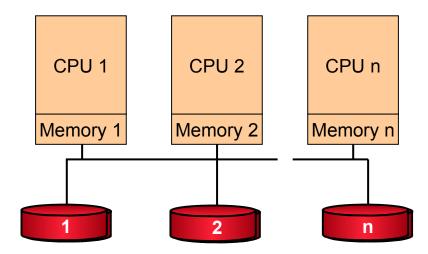
Note: 64-way measured as two 32-way partitions

- Permanent Capacity: CUoD ... pay when purchased (processors & memory)
- Temporary Capacity: On/Off CoD ... pay after use (processors & memory)
 - Reserve Capacity: CoD ... pay before use (processors)
- Trial Capacity: CoD ... no-charge for use (processors & memory)

Power Systems

9.1.2 Database Clustering Concepts


© Copyright IBM Corporation 2008 Material may not be reproduced in whole or in part without the prior written permission of IBM.


Database Implementation Power Systems Models

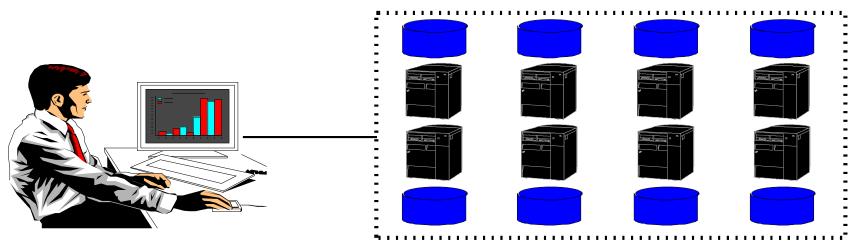
- Shared Nothing
 Either a single instance SMP database using local storage or multiple database files distributed across servers that own specific data sets very
 - database files distributed across servers that own specific data sets yet share one data dictionary
 - Multiple servers implement 'function shipping' to access specific information
 - Performance depends upon accurate data partitioning scheme
- Shared Disk
 - Cluster of SMP servers using centralized storage to preserve a single system database image with no concept of data ownership
 - All servers have equal access
 - Performance depends upon efficient inter-node synchronizations
- Shared Disk + Distributed Cache
 - Clustered server, shared disk approach with a global cache manager using memory resources of cluster nodes for avoiding disk I/O
- Federated
 - Multiple server nodes with separate databases and data dictionaries; servers do not guarantee uniqueness of records

Shared-Nothing vs. Shared Diskwer Systems

- Can exploit simpler, cheaper hardware
- Almost unlimited scalability
- Work well in a high-volume, readwrite environment
- Data is partitioned across the cluster

- Quick adaptability to changing workloads
- High availability
- Performs best in a heavy read environment
- Data need not to partitioned

Source: Craig S. Mullins, Database Administration – The Complete Guide to Practices and Procedures

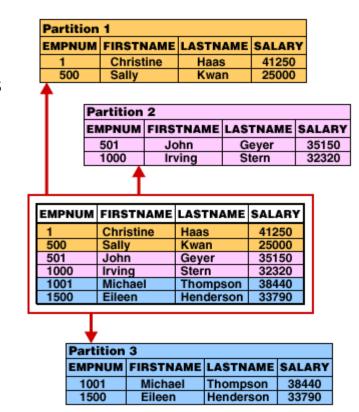

© Copyright IBM Corporation 2008

DB2 Multisystem

Power Systems

- Loosely Coupled Massively Parallel
 - Shared Nothing Architecture
 - Partitioned Database, Table is spread across nodes
 - User-Defined partitioning or random partitioning
- SINGLE TABLE VIEW to the application
 - Data Warehousing, OLAP, Data Mining, DSS Reporting
- Performance and Capacity Scalability virtually unlimited
- Single Table can be spread across up to 32 systems
 - up to 190 Terabytes disk space per system
- From the user's perspective, the database appears as a single database
 - the user can run queries in parallel across all the systems in the network

© Copyright IBM Corporation 2008 Material may not be reproduced in whole or in part without the prior written permission of IBM.



Hash Partitioning and Range Partitioning

Power Systems

Example: To partition table PAYROLL in library PRODLIB with partitioning key EMPNUM into 3 partitions, using

- Hash partitioning (places rows at random intervals)
 - CREATE TABLE PRODLIB.PAYROLL (EMPNUM INT, FIRSTNAME CHAR(15), LASTNAME CHAR(15), SALARY INT) PARTITION BY HASH(EMPNUM) INTO 3 PARTITIONS
- Range partioning
 - CREATE TABLE PRODLIB.PAYROLL (EMPNUM INT, FIRSTNAME CHAR(15), LASTNAME CHAR(15), SALARY INT)
 - PARTITION BY RANGE(EMPNUM)
 (STARTING FROM (MINVALUE)
 ENDING AT (500) INCLUSIVE,
 STARTING FROM (501)
 ENDING AT (1000) INCLUSIVE,
 STARTING FROM (1001)
 ENDING AT (MAXVALUE)

© Copyright IBM Corporation 2008

Partitioned Tables

Allow a table to be stored in multiple members but treated as one table

- ONLY should be used in cases where the single table limit of 1.7 TB or 4.2 billion rows is exceeded
- Partition tables should not be used to improve performance
- Limited optimizer awareness of partitions, especially the CQE query optimizer
- Fast delete of rows in a partition is supported
- Requires the DB2 Multisystem feature of i5/OS

Power Systems

Partitioned Table Diagram

Schema	
Non-Partitioned Table	Partitioned Table
	Partition 1
	Partition 2
	Partition 3

i5/OS does not require partitioned tables to fully exploit parallelism!

Table Sizes

To understand just how large these limits are, here is a list of various row lengths and the approximate number of rows needed to reach the 1.7TB limit:

Row Length	Number of Rows
32,766	57 million
8,192	228 million
2,048	912 million
1,024	1.8 billion
512	3.6 billion
435	4.2 billion

A partitioned table can have up to **256 partitions**,

- Each partition able to grow to the respective maximums.
- Fully populating would result in 1 trillion rows and a table size of 435 TB!

Next Lecture:

- Scalability
 - SMP and Clustering
- High Availability
 - Backup and Recovery
 - Save While Active
 - Cluster
 - iASP