
Module 2 © Copyright IBM Corporation 2008 1

Power Systems

System i Architecture – Part 1

Module 2

Module 2 © Copyright IBM Corporation 2008 2

Power Systems

2.1 Impacts of Computer Design

Module 2 © Copyright IBM Corporation 2008 3

Power Systems

If an instruction set architecture is to be
successful, it must be designed to
survive rapid changes in computer
technology.*

* Source: John Hennessy, David Patterson, Computer Architecture. A Quantitative Approach.

An architect must plan for technology
changes that can increase the lifetime
of a successful computer.*

Module 2 © Copyright IBM Corporation 2008 4

Power Systems

Hardware Dependencies

Compiler Assembler Hardware

High-level
language

Assembly
language

Binary
machine
language

1000110010100000add A, BA + B

What happens by changing technology?

Recompile? Rewrite? Emulation?

Program sources?
Performance?

Usage advantages of new technology?
Costs?

Module 2 © Copyright IBM Corporation 2008 5

Power Systems

Application Programming Interfaces

Hardware

Add A,B

Program

add A,B

API

– a set of definitions of the ways in which one
piece of computer software communicates
with another

– method of achieving abstraction

- Negative performance impacts

- Reduce hardware dependence

Module 2 © Copyright IBM Corporation 2008 6

Power Systems

Hardware Abstraction Layer of OS

Hardware

Kernel

OS

Applications

- lower-level details are hidden
- offers simpler models to higher level

Direct access to hardware
means

hardware dependence!

Module 2 © Copyright IBM Corporation 2008 7

Power Systems

2.2 Goals of the System i Architecture

Module 2 © Copyright IBM Corporation 2008 8

Power Systems

Different Workloads - Different Requirements
• Commercial Applications

– Many concurrent user
– Primary using integer arithmetic,

string comparison updates and
inserts

– Applications perform many calls
to OS for services, such as I/O‘s

– Fewer loops and more non-loop
branches

– Data often spread over a large
amount of disk space

• Engineering/scientific Computing

– Compute-intensive workload
– Floating point processing
– Using relatively small amounts of

data
– Many tight loops
– I/O‘s more often sequential than

random

Module 2 © Copyright IBM Corporation 2008 9

Power Systems

i5 Forerunner

Quelle: "AS/400 Blackbox geöffnet", Frank Soltis, Duke Press 1997

Module 2 © Copyright IBM Corporation 2008 10

Power Systems

IBM Rochester (Minnesota)

Module 2 © Copyright IBM Corporation 2008 11

Power Systems

AS/400

Scaleable High Scaleable High
Performance ComputingPerformance Computing

19881988

S/32

CompactCompact

CardlessCardless

ComputingComputing

19751975

The Secret of Success

S/3

96 Col Card96 Col Card

19691969

S/34

InexpensiveInexpensive

InteractiveInteractive

ComputingComputing

19771977

S/38

AdvancedAdvanced

ArchitectureArchitecture

19801980

S/36

DistributedDistributed

ComputingComputing

19821982

iSeries

ServerServer

ConsolidationConsolidation

NewNew

WorkloadsWorkloads

20002000

i5

VirtualizationVirtualization

20042004

Module 2 © Copyright IBM Corporation 2008 12

Power Systems

AS/400

Scaleable High Scaleable High
Performance ComputingPerformance Computing

19881988

S/32

CompactCompact

CardlessCardless

ComputingComputing

19751975

The Secret of Success

S/3

96 Col Card96 Col Card

19691969

S/34

InexpensiveInexpensive

InteractiveInteractive

ComputingComputing

19771977

S/38

AdvancedAdvanced

ArchitectureArchitecture

19801980

S/36

DistributedDistributed

ComputingComputing

19821982

iSeries

ServerServer

ConsolidationConsolidation

NewNew

WorkloadsWorkloads

20002000

i5

VirtualizationVirtualization

20042004

Note the secret to this success……

Gradual, not Radical Change……

Module 2 © Copyright IBM Corporation 2008 13

Power Systems

Design Requirements for System i

• Goal: Business Computer
– Ease-of-use user interfaces
– Ability to expand the system without an impact on

business application software
– Optimized for running business applications

• IO intensive workload rather than computing intensive
workload

– Optimized for multi-user applications

– High throughput (fast IO operations)

Module 2 © Copyright IBM Corporation 2008 14

Power Systems

The Five Sacred Architecture
Principles of System i

• Technology Independence

• Object-based Design
• Hardware Integration

• Software Integration

• Single-Level Store

Module 2 © Copyright IBM Corporation 2008 15

Power Systems

2.3 Overview of the MI Architecture

* called Machine Interface on i5 Systems

Module 2 © Copyright IBM Corporation 2008 16

Power Systems

Programmer’s View on System i

Hardware

Kernel

OS

Applications Direct access to hardware
is not allowed!

Machine Interface (MI)
 - or Technology Independent Machine Interface (TIMI)
 - logical not physical interfaceSLIC

i5/OS*

System License Internal Code (SLIC)
 - insulate applications from underlying hardware
 - SLIC is hardware dependent!

* Aka OS/400 on AS/400 and iSeries

Module 2 © Copyright IBM Corporation 2008 17

Power Systems

System i Hardware Interface Architecture

Designed for Software Investment Protection
•Technology Independent Machine Interface
•Software remains the same while

– Processors change

– Buses change

– I/Os change

•Applications inherit advantages of new hardware
enhancements
– Processor speed and price/performance

– Address space

– Bus and I/O technology

Module 2 © Copyright IBM Corporation 2008 18

Power Systems

Instruction set (executable):

OP Operands

Operations

 - Computional

 - Branching

 - Data manipulation

Operands

 - Memory/register

 - Immediate data

Product-supported structures:

Adress

Space I/O

Space

Register

Space

Machine interface

Microcode layer

Hardware

Hardware

dependent

Conventional Machine Interface

Module 2 © Copyright IBM Corporation 2008 19

Power Systems

Use of Objects

Hardware

Kernel

OS

Applications

SLIC

i5/OSOS/400 Objects

based on

MI System Objects

- Objects are used for complex data structures

- Examples: Database file, User profile, Program, …

Module 2 © Copyright IBM Corporation 2008 20

Power Systems

Hiding the Internals: Encapsulation

• Programs no longer know about precise format of the data structure
– any changes of data structures have no effect on application or system

programs
• Only instructions that treat the object as entity are allowed

– fields in the data structure can not manipulated with bit- or byte-level
instructions

Module 2 © Copyright IBM Corporation 2008 21

Power Systems

Instruction set (non-executable):

OP Operands

Operations

 -Computional instructions on
traditionel operands

 -Object-oriented instructions

Operands

 - Immediate data

 - Objects

Product-supported structures:

Machine interface

System Licensed

Internal Code

(SLIC)

Hardware

Hardware

dependent

Complex

data

structure

Byte

space

Objects

System i Machine Interface

Module 2 © Copyright IBM Corporation 2008 22

Power Systems

Pro‘s and Con‘s of using OO
• Advantages:

– Technology Independance
• Hardware changes have no impact on applications

– Integrity
• Programs at the MI layer do the right things

– Security
• Virus resistent

• Disadvantage
– Performance

• OO technology reuses many small modules
• long instruction-path length
• kernel performance has impact to the overall performance

Fine Tuning is important!

Module 2 © Copyright IBM Corporation 2008 23

Power Systems

OS/400

SLIC

Hardware

OS/400

SLIC

Hardware

Machine

Interface

Security Database

Device
support

Work
management

Control
language

Machine

Interface

File
definition

Member
definition

Open Data
transfer

Close

Operating System Functional Split

Module 2 © Copyright IBM Corporation 2008 24

Power Systems

Creating a System i Program

Program
Source

Program
Template

*PGM

Compiler

Binary RPG
Cobol
C/C++
…

MI Instructions

Translator

Machine Interface

Module 2 © Copyright IBM Corporation 2008 25

Power Systems

Inside a *PGM Object

Debug
Informations

Program
Template

Binary
Instruction Stream

*PGM Header
(Name, Owner, …, Translator version)

Observability
• Debug informations are not

embedded in the code
• Template can be deleted

Module 2 © Copyright IBM Corporation 2008 26

Power Systems

2.4 Examples

Using advantages of MI

Module 2 © Copyright IBM Corporation 2008 27

Power Systems

2.4.1 From CISC to RISC

The way to a 64-bit Architecture

Module 2 © Copyright IBM Corporation 2008 28

Power Systems

Instruction Set Classes

Register-memory

Load R1, A

Add R3, R1, B

Store R3, C

Register-register (load-store)

Load R1, A

Load R2, B

Add R3, R1, R2

Store R3, C

Example: C = A + B

Source: John Hennessy, David Patterson, Computer Architecture. A Quantitative Approach.

Data can be accessed directly

clocks/instruction vary by operand location

Memory-memory

Add C, A, B

Module 2 © Copyright IBM Corporation 2008 29

Power Systems

CISC, RISC

• Complex Instruction Set Computing
– Includes also complex instructions which were direct

representations of high level functions
– General goal: orthogonality of instruction set
– Makes assembler programming easier

• Reduced Instruction Set Computing
– Philosophy behind: Do everything in registers!
– "Relegate Important Stuff to Compiler"

Module 2 © Copyright IBM Corporation 2008 30

Power Systems

Exercise: CISC vs. RISC

 Assume that a certain task needs P CISC
instructions and 2P RISC instructions, and
that one CISC instruction takes 8T ns to
complete, and one RISC instruction takes
2T ns.

 Under this assumption, which one has the
better performance?

* Source: John Hennessy, David Patterson, Computer Organization and Design, Ex.1.52

Module 2 © Copyright IBM Corporation 2008 31

Power Systems

A simple Way to 64 bit

48-bit CISC

Applications

LIC

OS/400
V2R3

64-bit RISC

Applications

SLIC

OS/400
V3R7

Machine Interface

Save Restore

Module 2 © Copyright IBM Corporation 2008 32

Power Systems

How it was done?

Some customers called IBM and said:
“I just installed the new systems, and my applications run slower”.

What was wrong?

Debug
Informations

Program
Template

Binary 48-bit CISC
Instruction Stream

*PGM Header
…Translator V3R2…

1. Compare translator
versions with currently
installed one

Debug
Informations

Program
Template

Binary 64-bit RISC
Instruction Stream

*PGM Header
…Translator V3R7…

1. Retranslate object
from template

1. From now on the
new code is used

Module 2 © Copyright IBM Corporation 2008 33

Power Systems

2.4.2 The Story of the Advanced S/36

Module 2 © Copyright IBM Corporation 2008 34

Power Systems

IBM System/36

•Was a simple and popular small business computer system,
•First shipped in 1983.

The System/36 was flexible and powerful:

• It allowed 36 monitors and printers to be connected together.
• All users could access the system's hard drive or any printer.
• It provided very good password security and resource security,

allowing control over who was allowed to access any program or
file.

• Devices could be as far as a mile from the system unit.
• Users could dial into a System/36 from anywhere in the world and

get a 9600 baud connection, which was very fast in the 1980s and
very quick for connections which used only screen text and no
graphics.

• It allowed the creation of databases of very large size. It supported
up to about 8 million records, and the largest 5360 with four hard
drives in its extended cabinet could hold 1.453 gigabytes.

• The S/36 was "bulletproof," able to run for six weeks or longer
between restarts (IPLs).

Module 2 © Copyright IBM Corporation 2008 35

Power Systems

Advanced S/36

• IBM introduced the AS/400 Advanced/36 with PowerPC technology
in 1994

Hardware

Kernel

OS

OS/400
Applications

SLIC

OS/400

S/36
Applications

SSP

Virt.S/36

System Support Program
(S/36 Operating system)

- was available for all
 RISC Models with
 OS/400 V3R6 to V4R5
- not included in i5/OS

MI

Module 2 © Copyright IBM Corporation 2008 36

Power Systems

2.4.3 Java Implementation

Module 2 © Copyright IBM Corporation 2008 37

Power Systems

Java Implementation

Hardware

Java
Applications

OS

JVM

iSeries

Java
Applications

 SLIC

OS/400

JVM
MI

JVMI

Typical iSeries

• Introduced with OS/400 V4R2
• New C++ implementation

Module 2 © Copyright IBM Corporation 2008 38

Power Systems

2.4.4 AIX Runtime (without LPAR)

Portable Application Solution
Environment

Module 2 © Copyright IBM Corporation 2008 39

Power Systems

• An integrated i5/OS7 runtime
for porting selected UNIX
applications

–Supports AIX 5L 32/64-bit
application model
–Exploits PowerPC's ability to
switch runtime modes

• Applications
–Integrated with iSeries file
systems and work management
–Can call DB2/4007, JavaTM and
ILE programs
–Exploit all aspects of iSeries
operations environment

iSeries
Application

PASE
Application

i5/OS

i5/OS Services
AIX

Shared
Libraries

Technology Independent
Machine Interface

Syscall

i5/OS SLIC Kernel

PowerPC AS 64-bit PowerPC 64/32-bit

 System i

Portable Application Solution Environment
(PASE)

Module 2 © Copyright IBM Corporation 2008 40

Power Systems

2.5 MI Programming Example

Module 2 © Copyright IBM Corporation 2008 41

Power Systems

Program Models

• Programs come in two flavors
– original program model (OPM)
– Integrated Language Environment (ILE)

MI programs can be created only for the OPM
environment!

– If you require ILE support use ILE C and its
built-in MI support

– For OPM use Create Program QPRCRTPG
API

Module 2 © Copyright IBM Corporation 2008 42

Power Systems

Example: Return the larger of two packed
arguments

/* Program Name: MI01 */

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;
DCL SPCPTR ARG2@ PARM;
DCL SPCPTR RESULT@ PARM;

DCL OL PARM_LIST (ARG1@, ARG2@, RESULT@) PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);
DCL DD ARG2 PKD(15,5) BAS(ARG2@);
DCL DD RESULT PKD(15,5) BAS(RESULT@);

CMPNV(B) ARG1,ARG2 / LO(ITS2);
CPYNV RESULT,ARG1;
B RETURN;
ITS2: CPYNV RESULT,ARG2;

RETURN: RTX *;
PEND;

Module 2 © Copyright IBM Corporation 2008 43

Power Systems

Define an Entry Point

/* Program Name: MI01 */

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;
DCL SPCPTR ARG2@ PARM;
DCL SPCPTR RESULT@ PARM;

DCL OL PARM_LIST (ARG1@, ARG2@, RESULT@) PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);
DCL DD ARG2 PKD(15,5) BAS(ARG2@);
DCL DD RESULT PKD(15,5) BAS(RESULT@);

CMPNV(B) ARG1,ARG2 / LO(ITS2);
CPYNV RESULT,ARG1;
B RETURN;
ITS2: CPYNV RESULT,ARG2;

RETURN: RTX *;
PEND;

First the program needs an ENTRY directive
statement to designate its external entry point.
The following directive declares an unnamed
(the *) external (the EXT) entry point, which is
called with a parameter list corresponding to
PARM_LIST (defined later in the source code).

Module 2 © Copyright IBM Corporation 2008 44

Power Systems

Entry Directive Statement

Module 2 © Copyright IBM Corporation 2008 45

Power Systems

Declare Arguments

/* Program Name: MI01 */

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;
DCL SPCPTR ARG2@ PARM;
DCL SPCPTR RESULT@ PARM;

DCL OL PARM_LIST (ARG1@, ARG2@, RESULT@) PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);
DCL DD ARG2 PKD(15,5) BAS(ARG2@);
DCL DD RESULT PKD(15,5) BAS(RESULT@);

CMPNV(B) ARG1,ARG2 / LO(ITS2);
CPYNV RESULT,ARG1;
B RETURN;
ITS2: CPYNV RESULT,ARG2;

RETURN: RTX *;
PEND;

OS/400 programs typically pass parameters by
reference as part of the high-level language
(HLL) calling convention. Because OS/400
programs pass by reference (that is, address
and not value), the program also needs to
define three space pointers (how storage is
referenced) to represent the three parameters
being passed.

To associate these
three space pointers
with the parameters
being passed to the
program, the
following operand list
(OL) is declared

Module 2 © Copyright IBM Corporation 2008 46

Power Systems

Declare Paramater Types

/* Program Name: MI01 */

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;
DCL SPCPTR ARG2@ PARM;
DCL SPCPTR RESULT@ PARM;

DCL OL PARM_LIST (ARG1@, ARG2@, RESULT@) PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);
DCL DD ARG2 PKD(15,5) BAS(ARG2@);
DCL DD RESULT PKD(15,5) BAS(RESULT@);

CMPNV(B) ARG1,ARG2 / LO(ITS2);
CPYNV RESULT,ARG1;
B RETURN;
ITS2: CPYNV RESULT,ARG2;

RETURN: RTX *;
PEND;

Module 2 © Copyright IBM Corporation 2008 47

Power Systems

Instruction Stream

/* Program Name: MI01 */

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;
DCL SPCPTR ARG2@ PARM;
DCL SPCPTR RESULT@ PARM;

DCL OL PARM_LIST (ARG1@, ARG2@, RESULT@) PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);
DCL DD ARG2 PKD(15,5) BAS(ARG2@);
DCL DD RESULT PKD(15,5) BAS(RESULT@);

CMPNV(B) ARG1,ARG2 / LO(ITS2);
CPYNV RESULT,ARG1;
B RETURN;
ITS2: CPYNV RESULT,ARG2;

RETURN: RTX *;
PEND;

The program then branches (the (B)
extender to CMPNV) to label ITS2 if
ARG1 is less than ARG2 (the /LO
branch target). Other target keywords
could be LO, HI, EQ, …
If ARG2 was greater than ARG1, the
CPYNV instruction at label ITS2 is
run, setting RESULT to the value of
ARG2.

Module 2 © Copyright IBM Corporation 2008 48

Power Systems

Program End

/* Program Name: MI01 */

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;
DCL SPCPTR ARG2@ PARM;
DCL SPCPTR RESULT@ PARM;

DCL OL PARM_LIST (ARG1@, ARG2@, RESULT@) PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);
DCL DD ARG2 PKD(15,5) BAS(ARG2@);
DCL DD RESULT PKD(15,5) BAS(RESULT@);

CMPNV(B) ARG1,ARG2 / LO(ITS2);
CPYNV RESULT,ARG1;
B RETURN;
ITS2: CPYNV RESULT,ARG2;

RETURN: RTX *;
PEND;

The program has now finished
processing and ends.
The previous return external (RTX)
instruction is not needed because it is
implied by the PEND directive. The
RTX instruction is included to add
clarity to the program flow.

Module 2 © Copyright IBM Corporation 2008 49

Power Systems

Lx86

Module 2 © Copyright IBM Corporation 2008 50

Power Systems

PowerVM Lx86 for
x86 Linux applications

 Supports installation and running of
most existing 32-bit x86 Linux
applications1

 Creates an x86 Linux application
environment running on Linux for
System p

 Extends values of IBM Power
Systems platforms to x86 Linux
applications

Transforming x86 Linux applications without porting
Helps enable x86 Linux apps to “just run” on Power Systems servers with Linux OS

Operating system
call mapping

Dynamic binary
translation

x86 Linux
Applications

Linux for
POWER

(1) System p Application Virtual Environment ("System p AVE")
runs most x86 Linux applications, but System p AVE cannot run applications that:
Directly access hardware (for example, 3D graphics adapters); Require nonstandard kernel module access or use kernel modules not provided by the Linux for POWER operating
system distribution; Do not use only the Intel IA-32 instruction set architecture as defined by the 1997 Intel Architecture Software Developer's Manual consisting of Basic Architecture
(Order Number 243190), Instruction Set Reference Manual (Order Number 243191) and the System Programming Guide (Order Number 243192) ll dated 1997; Are Linux/x86 specific
system administration or configuration tools; Require x86 real-mode.
Visit ibm.com/systems/p/linux/qual.html for detailed qualifications.

../../../HV%20PDT/Convergence/Oct%2007/50%20day%20review/ibm.com/systems/p/linux/qual.html
http://www-03.ibm.com/servers/eserver/pseries/hardware/entry/510express.html

Module 2 © Copyright IBM Corporation 2008 51

Power Systems

Front End

PowerVM Lx86

Back End

Dynamically translates and maps
 x86 Linux instructions to POWER

Translation process
– Translates blocks of code into
 intermediate representation

– Performs optimizations
– Stores optimized, frequently used blocks
 of code in cache

– Handles Linux OS call mapping
– Encodes binary for target POWER
 processor platform

 Best for certain applications and
 usage scenarios

–Power architecture can provide many
advantages

–But these make our architecture very
different from x86 architecture

–Translation can be resource intensive

Optimizer

x86 Linux Applications

Power Systems platform

POWER Processor

ISV
Binaries

User
Binaries

Linux OS (Red Hat or Novell SUSE)

Native
Linux for
POWER
Binary

What does PowerVM Lx86 do?

