
Increase in efficiency of free software
projects

through information management

Robert Schuster
Working group Software Engineering

Freie Universität Berlin

2005-05-17

Abstract
Free and Open Source Software is an enduring undertaking. How-

ever this does not mean that this development model has no flaws.
This paper will present a problem of the F/OSS development pro-
cess that results from insufficient care for information management.
I will outline the factors that lead to this problem and propose a light-
weight process enhancement to cope with it. This enhancement will

1

introduce a role named “mediator” - a person whose task it is to
make it easier for new developers to enter the project and support
the knowledge transfer between developers. The role is then imple-
mented in the project GNU Classpath and evaluated by it’s develop-
ers with the help of a survey. The key aspects of mediation are sum-
marized and abstracted in form of a short manual which is targetted
for use by any F/OSS project.

Contents
1 Introduction 3

1.1 Disambiguation . 4
1.2 Categories and conditions of F/OSS projects 5

1.2.1 Categories . 5
1.2.2 Environment and conditions 8
1.2.3 Definition of success 11

2 Introducing mediation 13
2.1 Which difficulties exist? . 13
2.2 The idea of mediation . 13
2.3 Selected tasks . 14
2.4 Project properties supporting the success of the mediation

role . 15
2.5 Related works . 16

3 Implementing the mediator 18
3.1 Introduction to GNU Classpath 18
3.2 Why GNU Classpath has been chosen for exemplifying me-

diation . 18
3.3 Formulation of the invitation mail 19
3.4 Conclusion . 21
3.5 Task and procedure of Classpath’s mediator 21
3.6 Further ideas . 23
3.7 Guidelines for the daily work 24
3.8 Dealing with problematic situations 24
3.9 Chosing the tools . 25
3.10 Implementation and problems 27
3.11 Announcement . 29

2

4 The mediation manual 29
4.1 Announcement I . 30

4.1.1 Procedure . 30
4.1.2 Reactions . 31

4.2 Conclusion . 33

5 Analysis of the practical implementation 33
5.1 Results . 34

6 Conclusion and perspective 35

A Invitation mail for GNU Classpath 36

B Announcement mail of the mediation Wiki 38

C Mediation Manual 39

D Announcement template for mediation manual 46

E Survey 46

References 56

1 Introduction
After more than 20 years of Free and Open Source Software (F/OSS) de-
velopment it should have been proved that this model is enduring. I leave
the question whether F/OSS will ever dominate the software market to
someone else and focus on lowering their entry level and improving the
maintainability of these ever-evolving software projects.

As F/OSS projects get older it gets more difficult for newcomers to join
it and they are less manageable for a single person. Part of this problem
is that the development process is seldom documented consistently (e.g.
archival of architectural decisions). This thesis will demonstrate “media-
tion” as one solution to get these defficiency under control.

Bigger F/OSS projects consist of a distributed team of developers which
often crosses timezones and cultural borders. While this may be good for
creativity and balance between interests this makes project management

3

more difficult. The problems manifest themself when making an appoint-
ment or when a debate gets hot because of different cultural tempers.

Usually F/OSS developers are motivated intrinsically which means
they do programming for the fun of it. Again this is quite good for the
actual result but it means that less amusing work like writing documenta-
tion gets neglected. Furthermore being on his own means that a developer
can completely chose his development environment and tools.

Communication and knowledge transfer is dominated by mailing list
and Internet Relay Chat (IRC) usage. These systems are not designed
for information management and make it hard to use it for them as the
project’s library.

The goal of this thesis is to define a light-weight process enhancement,
which minds the factors stated above and heightens the efficiency of the
project. The enhancement named “mediation” will introduce the role of
a project member who explicitly cares about the project’s information,
writes important issues (e.g. outcome of a discussion) down and makes
them available for future reference by new and long-established develop-
ers.

I will install “mediation” in the project GNU Classpath1 where the en-
hancement will be tested and qualitative advantages (as well as disadvan-
tages) recorded.

Eventually the key ideas of the process enhancement will be abstracted
and compiled as a set of guidelines for other projects as well.

1.1 Disambiguation
For this thesis I use the term Free and Open Source software (F/OSS).
However in general I prefer the shorter and older (1984) free software def-
inition2 and not the newer term “open source” which was coined 1998 by
the Open Source Intiative and describes itself as

“a marketing program for free software”3.
1http://classpath.org
2http://www.gnu.org/philosophy/free-sw.html
3http://opensource.org/advocacy/faq.php - How is "open source" related to "free

software"?

4

Finally the project which is presented as part of this thesis describes itself
as a free software project and it would be hard to find the reason for it’s
existence by being

“on solid pragmatic grounds”

only, as the OSI says it.

1.2 Categories and conditions of F/OSS projects
As a base work for the presentation of my process enhancement I will
categorize F/OSS projects and describe their development and sometimes
social conditions. In later sections I will make back references to the issues
explained here.

1.2.1 Categories

This section will give you an overview of categories of F/OSS projects
which is simplified to fit in the context of this thesis. Using the following
terms allows me to quickly describe the characteristics of a project at a
later time.

Single Person Projects

Any F/OSS project that has only member who is responsible for the de-
velopment of the software is a “single person project”. Undertaking of
this kind tend to be short-lived because when the initial motivation of
the founder goes away no developer is left to take over the maintainer-
ship. While one may be tempted to think that this is a great loss for the
F/OSS community which makes it less productive, maintaining a non-
critical software for a while is a valuable experience for newcomers: The
project founder learns the basics of administration like setting up a source
code respository, maintaining mailing-lists and a project homepage. This
knowledge can then be useful when participating in an established and
bigger project.

A single person project may evolve into some of the other project forms
when more developers get interested and join it. Eventually there are a

5

few projects which become successful but stay maintained by a single per-
son for a long time. Examples of this kind are the QEmu4 multiple CPU
emulator and the cdrecord tools by Jörg Schilling5.

Community-based project

A large number of applications serve the need of the free and opensource
community and have been created as some members of the community
felt the need for such a program. Sometimes a group of developers gathers
around a piece of source code that was once proprietary and got released
by its copyright holder.

Projects that belong to this category make up the backbone of the F/OSS
community because of their large amount and the wealth of knowledge
that is contained in them. A main characteristic of these projects is that
there is not much commercial interest. That leads to very informal project
management styles where every aspect relies purely on social interactions
of its members. One can safely say that they are the most free and inde-
pendent projects.

Organised community project

Since the early days of the F/OSS development people have organised
themselves in larger communities where an individual project is part of
the main goal of this community. These communities usually provide a
common code guide, documentation rules and guidelines for project man-
agement.

The oldest communities have been formed around the BSD and the
GNU project. In the recent times we can see the development of the Apache,
Debian, KDE an Mozilla communities. While some of them have formed
legal entities like the Free Software Foundation6, the Apache Software
Foundation7 or the Mozilla Foundation8 others remain an informal group
but are nevertheless known in the whole F/OSS community.

4http://www.qemu.org
5http://cdrecord.berlios.de
6http://www.fsf.org
7http://www.apache.org/foundation
8http://www.mozilla.org/foundation

6

An important fact about these groups is that they are mutually depen-
dent (e.g. Apache web server running on OpenBSD, being compiled by
the GCC) and often developers dedicated to one group work partly on
other (e.g. porting GNU software to the BSD platform). Software projects
belonging to such a group usually inherit their guidelines9 and are thus
more organised then their completely unbound counterparts. As an exam-
ple the GNU projects publishes and maintains their “GNU Coding Stan-
dards”10. These guidelines not only manifest itself as documents but find
their way into GNU applications, too: The Automake program is used to
simplify the construction of software11. In the default operating mode it
expects a certain set of files which is defined in the GNU coding standards
(see Automake Manual12) and can only be overridden by a command line
switch named “–foreign”.

Company controlled projects

In the last years several closed-source applications have been opened up
by their companies in the hope of having synergy effects by approaching
the F/OSS community. Taking Mozilla as a prominent example we have
seen that it takes some time and commitment by the copyright holder for
a released project to get adopted and developed by the community. As
long as the software stays under control of their company there is a high
risk, that the traditional development process dominates. One of these
problems is having face to face meetings of employees instead of organis-
ing an appointment on IRC or some other form of communication which
includes all project members.

On April 20th 2005 a news article on computerworld.com13 reported
that the well-known OpenOffice.org14 project suffers from lack of volun-
teer contributors. Besides 50 developers from Sun Microsystems only 4
active free contributors have been counted. Later one of those volunteers
commented his experience with the OO.o development team in the fol-
lowing way:

9This is often an acceptance criteria.
10http://www.gnu.org/prep/standards
11Compilation, library building, installation, ...
12http://sources.redhat.com/automake/automake.html#Strictness
13http://www.computerworld.com/developmenttopics/development/story/0,10801,101210,00.html?source=x10
14http://www.openoffice.org

7

"Since all the main coders work at Sun, you pretty much
stand no chance in hell of doing work on core components, ex-
cept bugfixing. So, for example, don’t expect to sign up to the
mailing lists and have any clue what people are working on.
Don’t expect to be informed of major changes coming down
the line unless you have somebody on the inside to give you
the scoop. Don’t expect to get involved in design discussions,
don’t expect to have any input on scheduling, don’t expect to
be consulted about anything except when you’re going to fix
bugs in your code, don’t expect to gain influence in the project
over time as you become an established, respected developer.
In short, don’t expect anything that you would normally expect
from an open source project."15

While I do not claim that his stance is the only reason for OO.o’s and other
company guided project’s lack of volunteers, it gives an indication on a
problem which might be analysed separately.

1.2.2 Environment and conditions

F/OSS projects are very diverse in nature and it makes no sense to define
clean borders to get them categorized. However by looking at the envi-
ronment and the conditions in a number of F/OSS projects one will meet
recurring properties. By digging deeper into this topic you will see that
projects belonging to any of the bigger groups like GNU or Apache share
some characteristics.

Communication

The main medium for communication is still the mailinglist. It is easy to
setup, hardly needs administration and there is no project hosting soft-
ware that does not support them. However the differences between the
begin with how a project sets up the mailinglists. Smaller projects usu-
ally have a common list for users and developers. Most bigger projects
start with a developer list, a user list and another one that broadcasts the
commit messages of the revision system (e.g. CVS).

15http://developers.slashdot.org/article.pl?sid=05/04/20/2157235&tid=185&tid=102&tid=8
- Post: "I guess I’m one of the four"

8

The manners on a mailinglist are usually defined informal. One of the
bigger differences to traditional company meetings is that the participants
of a mailinglist are not forced to read it. It is not unusual that someone has
not read a particular discussion or question and is therefore not up-to-date
with the latest advancements or decisions. This happens more often when
there is high traffic on a list, of course.

One of the good aspects of mailinglists is that they are usually publicly
archived.

Internet Relay Chat (IRC) is the another important medium for com-
munication which allows developers and users to quickly get in touch and
discuss imminent problems.

What is nice for development is used for socialisation, too. It is not a
good idea to underrate the importance of community members chatting
about topics such as news, the role of software in the human society or
just talk about their families. The maintainer of the later to be introduced
project GNU Classpath deliberately set up the project’s IRC channel to fos-
ter socialisation besides benefitting from the advantages for development.
On “Planet Classpath”16 developers write not only about software but do
film reviews as well.

Getting in contact with the developers via IRC is helpful for newcom-
ers, too. Although technically possible IRC meetings are not usually archived.
The reason for this is that the discussions are much more informal and
sometimes less development-centric as on the mailinglist and the devel-
opers prefer the kind of privacy the absence of public archival gives.

Decision making

The process of getting to a result or outcome on a debatable topic is largely
undefined. In [Ste00] we get to know that the coordination of discussions
is done through social conventions which have to be learned by experi-
ence.

A usual discussion starts with a request on the mailing list and ev-
ery member having an opinion tells what he or she thinks about it. The
outcome may be clear when enough striking arguments have been told.
Sometimes the maintainer has to intervene to stop “flame wars” or, on

16http://planet.classpath.org - A web page where the GNU Classpath developer web
blogs are syndicated.

9

another day, a discussion simply dies because of lack of interest. One
kind of critical direction in a discussion is taken when it evolves into a
“bikeshed”17 discussion.

One important difference to decisions traditionally made in software
projects is that they are not explicitly written down. Everyone who took
part in the discussion may be informed about the outcome. This especially
problematic for newcomers because they neither know the outcome nor
have they a clue that such a discussion has ever taken place. The mailing
list archive helps finding these discussion but it should be noted that it
may be difficult to understand its context.

Tool usage

Traditionally the tools used by F/OSS debelopers are born from the com-
munity itself. The highly successful Concurrent Versions System (CVS18)
started as a set of shell scripts which where later rewritten as a real appli-
cation. New functionality and features where added as the need for the
arised. Even Subversion19 which is today treated as CVS genuine succes-
sor has its roots in the community because it was designed to overcome
the problems people had with CVS.

Another well-known application is Emacs which has a long-history
and still today is used by many developers even there are viable alter-
natives as KDevelop, Anjuta or Eclipse. And last but not least there is still
a living community around one of the oldest editors namely vi[m].

As the development tools are freely chosen by their perceived useful-
ness, their users are unlikely to adopt newer or better-marketed tools. It
is considered bad behavior forcing someone to use a specific program to
do a certain task. That said developers like automatisation on a low and
easily controllable way. The way considered the easiest is often writing
scripts in a language like Perl or Bash20 script. When wanting to introduce
a better kind of working one has to keep in mind this attitude towards tool
usage.

17The word is taken from an analogy which says that few things to be discussed when
something as complicated as a nucler power plant has to be built but a huge debate arises
around something simple like a bikeshed.

18http://www.cvshome.org
19http://www.subversion.org
20http://www.gnu.org/software/bash

10

1.2.3 Definition of success

In order to enhance a F/OSS project I needed to know how it defines suc-
cess. As the F/OSS community works a little different from the commer-
cial world it is not trivial to define or work out what these measures of
success are.

In [CAH03] the authors work out draft ideas about success in tradi-
tional commercial software and F/OSS projects. Furthermore they do an
interesting experiment by asking the question about F/OSS success mea-
sures on Slashdot21, a well-known news site among F/OSS developers,
and analysing the answers. The cited paper does not claim to have found
the ultimate answer to F/OSS project’s success measures and I do not so
either. However it gave me a direction and some values which underline
the assumptions.

Furthermore the Slashdot experiment demonstrated to me that I have
to keep in mind that parts of the success definition are inherently subjec-
tive: It makes no sense to define external project success requirement as
“GNU/Linux has to reach a market share of 50% on desktop systems by
the end of 2005.” when an individual developer values it as success, that
he can work with the hardware device he has just written a driver for.

As you see success measurement of F/OSS project is a very interesting
and debatable topic. However I consider going more into detail is not
benefecial to my work. From the list of measures given by Crowston et
al I picked three from which I can say that they are explicitly targetted
by my approach. The following sections will present these measures and
discusses their importance.

Developer count

F/OSS projects are considered open-ended. Software as we understand
today evolves and with this steady evolution goes the need for developers
who actively contribute to the project. It should be clear that even the most
dedicated amongst the participants of a F/OSS project may leave one day
to do something else. A simple search on an online search platform for the
phrase “needs new maintainer” will quickly reveal numerous hits to mail
archives where a new maintainer to an existing F/OSS project is requested.

21http://slashdot.org

11

While actively asking for a new caretaker is one form to prevent that
a project gets dormant I will aim at getting it interesting enough that new
contributors find their way into the project before the last developer steps
out.

Level of activity

The level of mailing list and RCS commit activity may be considered as
a good measure of success but I suggest to be careful here: While a high
activity is hardly considered harmful a low or suspended activity should
not be equated with the project’s death.

As an example the gplflash22 project was left unmaintained for 4 years
before a developer volunteered and took over it’s maintainership. There
is even a whole effort called Unmaintained Free Software23 whose task is
to list F/OSS projects that have no active developers and hopefully find a
new caretaker for it.

Even though we know learned that F/OSS projects may be reborn I
will address the level of activity as a success indicator that should be kept
at a high level.

Developer satisfaction

Although this measure showed up very strongly in the analysis in [CAH03]
it is in itself not definite what actually provides the satisfaction. However
out of common sense I can construct certain situations where many will
agree, that it will have a satisfying effect on the developer:

• A user of the F/OSS program or library thanks it’s author personally.

• A developer implemented a complicated feature that finally worked
the way it was intended.

• The program or library starts to serve the need it was developed for.

While my approach to leveraging F/OSS development is not actively in-
fluencing the users it will aim for giving the satisfaction of the kind of the
second and third example to the developers.

22http://gplflash.sf.net
23http://www.unmaintained-free-software.org

12

2 Introducing mediation
Einführung
zum
Ab-
schnitt

2.1 Which difficulties exist?
We have seen that discussion on the mailing list are held informal and
are fundamentally different to a meeting in the commercial environment,
where it is crucial for the projects advancement to get to a concrete deci-
sion. In F/OSS project we have the following properties:

• There is no force to get to a conclusion to a certain point of time.

• If none of the participant has a clever idea the discussion remains
without a result.

• If opposing opinions clash upon each other and no consens can be
reached there will be no consistent result. Furthermore there is no
administration that forces to reach that conclusion.

The usage of simple communication means like mailing-lists and IRC has
technical obstacles: Responds to emails may have a delay from some min-
utes to several days. In contrast to traditional (face-to-face) discussions
where the memory of the participants is generally fresh, email-based dis-
cussion bear the risk of simply forgetting former utterances. This even
more likely when a participant follows a minor branch of the discussion.
However it is exceptionally good that email discussions are publicly archived.

Regarding IRC we will notice that statements are presented in list form.
Overlapping answers make it hard to not to lose the plot.

Finally one of the major drawbacks is that at the end of the discus-
sion only their participants know about the conclusion. Even if someone
writes another mails summarizing the outcome this message is buried in
the archive after a few weeks. This is especially bad for persons who join
the project after the decision is made.

2.2 The idea of mediation
The goal of my process enhancement is to stem the problems mentioned
above. I therefore define a role, whose task is to be attentive in critical
situations and makes sure that valuable information does not get lost.

13

Later I will explain which are these situations and which criterias should
be used when selecting what to record. These ideas will be consciously left
vague as variation occurs within each project and I assume that after a cer-
tain time of familiarization it becomes clearer what the project values as
important and what not. Finally I will present the Wiki as a system that
lends itself for information collection.

In F/OSS projects it is usual that its members have a high level of free-
dom to chose how they contribute. Besides programmers people who care
about the project’s homepage are gladly viewed. It is up to the partici-
pant in how many fields he gets involved. The mediator role will be just
another remit.

In other words I am simply going to add another component to the
F/OSS development process. Furthermore I will in combining familiar
technology and tools to something new, I follow a principle that is used to
many F/OSS developers from the Unix tools.

2.3 Selected tasks
Within the scope of this thesis I have selected the following taks, which
appeared to me as being the most promising.

Help for beginners

If someone joins a project, all decision made in the past are not visible for
this person. In efforts of great age, changing developers and high count of
participant mistakable and confusing implementations are possible. Some
design decisions may be known to the older participant as historically jus-
tified but was never written down. The mediation effort therefore tries to
collect information for beginners, which will make it easier for them to get
used to the project and effectively lowers the entry barrier.

Achieve an overview about the project

Due to the voluntary collaboration nobody can demand to have an overview
on the state of individual parts of the project. Even the maintainer, who
may traditionally be regarded as responsible for this, is in no way obliged
to be familiar with every section of the project. It will be up to the me-
diation effort to scan the relevant communication channels for specialist

14

knowledge and developer decisions and keep this in form of a summary:
On the mailing list it is usual that developers announce to do a certain
work. Since this commonly is not a reason for a bigger discussion such
news easily perishs and falls into oblivion. It is then the task of the medi-
ator to keep hold of such announcements and update them accordingly.

Support decision making

Dicussions on the mailing list do not always lead to a precise result or do
not cover all possible cases of a problem. To enhance this situation the
mediator should raise a topic when these unclarites occur and therefore
aim at clarification.

Raise consciousness for the mediation effort

The difficulty of the mediation is largely dependent on the support of the
remaining project members. In an ideal world a mediator would not be
needed because every participant would collect relevant information on
itself. However I regard this approach as not being able to reach consen-
sus. Clues in emails that someone wants a certain issue being kept would
make the mediator’s job easier. It is therefore a minor task to convey the
sense of mediation and to get the participants to interact with the media-
tor.

2.4 Project properties supporting the success of the media-
tion role

The mediation effort is not applicable to every project. Some have found
different possibilities to cope with the problems or their personal structure
makes it hard to apply mediation. In the following I present certain project
properties and why their appearance makes spurs the mediation effort.

Project size/complexity

The mediation effort makes sense if a software project contains multiple
modules that may evolve independently from each other. In this situation
the mediator cares for a better overview.

15

No constraints on the choice of work

The freedom to chose on what to work on is an important requirement that
most F/OSS projects provide. What it makes interesting for mediation is
that this freedom allows a developer to leave his tracks on very distinct
parts of the source code. It is likely that he does not really understand
the design of the piece of code. Mediation can help here by providing the
decision that led to the design of a particular module.

Little formalism

When I speak of formalism for F/OSS projects I mean guidelines on how
to document a discussion and whether software design papers are in use.
In the F/OSS community many project do not have this kind of formalism
or only feature a little amount of it. Although being a quiete fast process in
the beginning problems evolve at a later point when written information
would be more helpful. This is were the mediator comes into play to distill
that information from the project’s archived communication.

2.5 Related works
Mediation is by far not the only idea to enhance the development process
of F/OSS projects. This section presents other works which focus on in-
formation management but follow a different approach.

Hipikat

Hipikat is an Eclipse plugin to automatically process project data from
various repositories. It is targetted to newcomers of Java projects and was
tested in the Eclipse community. The tool is able to read search requests
and retrieves its information from the source code repository (CVS), the is-
sue management software (Bugzilla), the project’s mailing-list and news-
group.

Being a good tool for it’s projected goal it is not able to build a reposi-
tory of information that can be read like documentation. As time goes by
the amount of search results gets bigger and the every user has to find out
the history of the project itself. Apart from that it is a Java application that

16

depends on Eclipse. Forcing F/OSS developers to use this platform con-
flicts with my goal to non-intrusively enhance the development process.

Kerneltraffic24

Kerneltraffic is a project which monitors the development mailing-lists of
F/OS software projects. The authors scan the posts for interesting events
and discussions in order to summarize the content. These summaries are
usually published on a weekly schedule and are available in multiple data
formats. Currently kerneltraffic actively monitors the famous Linux ker-
nel mailing list and the developer mailing list of the Wine project. The pur-
pose of kerneltraffic differs largely from what the mediation effort wants
to achieve. While the focus of the former is on publishing news, mediation
is centered on the own project solely.

Kernelnewbies25

Kernelnewbies is a whole project dedicated on teaching programmers about
operating systems kernels in a way that the participant can fix problems in
it themselves. The project mainly focusses on the linux kernel but accepts
others, too. It features a homepage with FAQ page, a mailing list, a Wiki
and an IRC channel. Kernelnewbies is pretty close to the mediation effort
but there are some major distinctions:

• it is separated from the development project

• it focusses on operating system kernel development only

• it addresses new developers

Linux Kernel Janitors26

The Linux Kernel Janitors are a kind of support team for the kernel de-
velopers. While others implement new features and drivers, the janitors
clean up the source code of older modules. The project is meant for new

24http://www.kerneltraffic.org
25http://www.kernelnewbies.org
26http://www.kerneljanitors.org

17

developers which want to get in touch with kernel development. As jani-
tors these people can do small and straightforward tasks and thereby learn
how code for the linux kernel has to be written. Like Kernelnewbies this
project focusses on new developers only and it is not meant to build a
database of development information over time. However an interesting
aspect is that this kind of mediation contains practical work.

3 Implementing the mediator

3.1 Introduction to GNU Classpath
GNU Classpath is an effort to write a clean-room implementation of the
Java class library and distribute it under a Free Software license. The soft-
ware does not work as a stand-alone product and has to be combined with
a runtime (Java virtual machine) instead. Classpath is used in projects
from classical Java virtual machines, over bindings to other languages
(.NET, Oberon, Scheme) to complete Java-based operation systems. The
ultimate goal is that several runtimes can use Classpath out of the box
without modifying it.

GNU Classpath was founded in 1998 and has about 50 developers from
which are 30 actively working on it. The number of developers working
voluntarily for the project is predominant while others are employees of
F/OSS friendly IT firms (ie. Red Hat).

A special aspect of Classpath is that it’s developers are often involved
in dependent projects. That means that their work on Classpath can be
seen as a cooperation between these projects. The effect of this circum-
stance is that many different requirements are posed towards Classpath
because each project has different conditions.

3.2 Why GNU Classpath has been chosen for exemplifying
mediation

With its foundation being 7 years ago the project nearly promises to have
burried major design decisions in its sourcecode. With developers chang-
ing over time the knowledge about these implementation was lost. Be-
sides the age there was a big focus change from the time where GNU

18

Classpath supported only a single virtual machine to today’s state where
it is used by around 10 different projects.

From the statistics I learned that there are 20 former contributors. This
means that understanding someone else’s code and intentions is getting
important for new developers.

Since Java packages are usually quite independent from each other,
their development can be done without much arrangement between the
contributors. The developer may get the impression easier that explaining
his intentions when implementing a public API is not important.

3.3 Formulation of the invitation mail
I decided to write an invitation mail which described the process enhance-
ment of mediation and how it should be applied to Classpath. In this vein I
hoped to receive feedback on my plans which could be helpful. The invita-
tion mail was first send to Classpath’s maintainer Mark Wielaard to make
sure that the portrayed approach was understandable to anyone who was
not involved in the planning phase.

I composed the invitation mail with hindsight to the circumstances de-
scribed in section 1.2.2 on page 8. Since I could not assume that the ad-
dressee know about the usual terms of software engineering I avoided
their use. I was prepared to receive some opposition or at least lack of un-
derstanding and therefore clarified my intentions using examples. Futher-
more I uttered my respect to the ensuring of everyone’s privacy and made
suggestion for anonymisation since there may be persons who attach spe-
cial importance to this.

As I developed for GNU Classpath myself, I described problems with
the project from this perspective.

Reaction Mark Wielaard I

Mark Wielaard is maintainer of GNU Classpath since 2003 and his answer
was very clear in favor of the mediation effort as well as my scientific
study of this. I was a bit surprised by this reaction and thought there will
be more reservations and problems of understanding with my approach.

Besides his approval he told me that my assumption about voluntary
work holds for GNU Classpath. He said he has done the first steps to bring
the developers together on a social level by creating two IRC channels.

19

One of them is used for developers, users and other interested persons
of GNU Classpath and GCJ27 which act as a rally point for questions and
problems with the software.

Reaction Andrew John Hughes (AJH)

AJH has expressed positively about my plans but notes that he consid-
ers GNU Classpath not being a regular F/OSS project with scientific or
commercial background. In his opinion the work of the mediator is more
suited to someone who does not actively program. Since GNU Classpath
cannot accept source code from developers having seen Sun’s implemen-
tation, persons which are tainted in this regard have the possibility to do
the non-programming tasks. He thinks of this as some kind of selection
“by policy” although this has not been used much so far. AJH thinks that
one of Classpath’s main difference to other F/OSS projects is that it’s de-
velopment team does not fluctuate.

Reaction Mark Wielaard II

Mark answered to AJH expression and defended the position that GNU
Classpath is a rather regular F/OSS project because code acception policies
are in use at the Linux kernel and Apache Software Foundation, too.

Reaction Michael Koch (MK)

MK is a Classpath developer since 2002 who is known for his high quantity
of contributions and work on a wide variety of modules. MK said that he
is in favor of the mediation idea and expressed his concerns about the
problems of beginners. In his opinion the needed information exists but
cannot be found easily. Furthermore he thinks it is hard for beginners to
figure out what they can work on. When applying mediation MK wants to
have assurance that this will not hinder the experienced developers doing
their job.

27A part of the GNU Compiler Collection and sister project of GNU Classpath.

20

Other

The remaining mails dealt with the distinctive feature of having an imper-
ative proof of the origin of the sourcecode. This proof was always manda-
tory for GNU projects but is evolving for other projects, too.

3.4 Conclusion
Despite my concerns the idea of mediation was generally accepted. I had
expected more opposition. AJH sees less fluctuation on Classpath than on
other projects, however in __LINK!__ we learn that the successfull F/OSS
projects feature a stable core group of developers. The points addressed by
the answers gave me some hints on how to fine tune the mediation effort.
Michael Koch’s concerns to not to hinder the experienced programmers
should remember me not to send too much mails to the mailing list. Find-
ing a place to start was mentioned and coincendentally was my problem
too before I joined GNU Classpath. The mediation effort should therefore
not forget about this problem.

3.5 Task and procedure of Classpath’s mediator
The mediator wants to collate the knowledge which is spreaded on single
developers and thereby make it accessible to all of the project members.
The mediator feels responsible for this job in particular but should not
impose a restriction to modify the data collected by him. This way another
project member can change something that was misinterpreted or needs
an update on its own. For this purpose a Wiki seems to be a viable option.

In the following paragraphs I explain the mediator’s work and what
the benefits of this are. Later on I will study these guidelines in practice.

Collate support and information for beginners

The mediator collects data which is of importance for beginners to success-
fully get familiar with the project. Part of this information may be coding
guidelines and conventions or patch commit rules. One can think of this
data as a list of frequently asked questions (FAQ) for new developers.

21

In detail the mediator scans the usual communication channels for
project centered and beginner relevant information. Questions on the mail-
ing list asked by beginners are a good way to find this information, too.

If something interesting was found the mediator should summarize
the problem and put it into the database.

Support finding a solution to unanswered and periodical recurring ques-
tions

Sometimes it happens that a certain problem is addressed multiple times
by one or more persons over a longer period without getting to a conclu-
sion. The mediator’s job is to support getting to a discussion about the
problem in order to reach an agreement. This outcome can then be added
to the database.

At first identifying the recurring topics is the major task. It is up to the
mediator how he deals with that. Sometimes it is another project member
who remembers the an earlier discussion and alludes to this in one of his
answers. Careful reading of the mailing list is therefore very important for
the task.

When the topic has been identified the mediator should pose a request
to discuss the topic. This request should suport for the addressed per-
sons by summarizing what the problem is and what the current conclu-
sion is. Links to former discussion should be added as well. The mailing
list archive can be helpful for this.

After the discussion has taken place and an outcome it should be put
to the database along with a notice to the mailing list.

Summarize and process decisions

Dicussions on the smaller and bigger implementation problems are com-
mon on the developer mailing list. Sometimes bigger changes to the source-
code have to be done in steps and the intermediary changes are announced.
The mediator should detect such mails and put the relevant information
into the database.

In detail his task is to follow discussion and remember items which
were granted agreement. When the discussion reached the point where
an outcome is clear this should be summarized and added to the database.

22

With a notification in form of a mail about this new entry the other devel-
opers can then check the validity of the summary.

Maintenance of the database

The base idea is that the collected data ages and may get outdated as the
development of the project goes on. To be of use for the developers it is
neccessary to keep the data up to date.

One way to do this is to pay attention to mails or IRC chats about an
already recorded topic and update the entries accordingly.

However I consider it to be much better if a developer knows that there
is something written about a topic he is working on. This way the devel-
oper can update the issue on its own when something has changed.

In order to inform the other developers about issues dealing with their
work, the mediator sends an announcement about the newly added data
to the mailing list. As a side effect the affected persons can check whether
the information was summarized correctly and may change it if not.

3.6 Further ideas
Besides the tasks presented above there are more topics which might be
included in the mediation effort. As time for the experiment was limited I
decided to let them out at first although they might be interesting for GNU
Classpath, too.

Collection of long-term goals

Real meetings at yearly F/OSS developer conventions are sometimes used
to discuss and make long-term plans. By writing them down as mediation
data this information can help developers to find out where the project is
heading.

Evolve project’s development policies

Community projects with no further ties to a larger organisation have to
find their own policies regarding topics like the release interval, the defi-
nition of a release critical bug, patch commit rules or coding style. I think

23

it is obvious that for such projects it is quite handy to write these policies
down to make them available for newcomers.

3.7 Guidelines for the daily work
The mediator role is meant as a process enhancement which should be
integrated in an existing software development process. To increase ac-
ceptance in the project the additional work should not hinder the regular
participants. Furthermore the principle of voluntary work should not be
undermined. Therefore I suggest the following rules.

No force on collaboration

A key aspect of F/OSS projects is that members do their work and contri-
bution voluntarily. Developers react in a negative way [Ste00] when they
are ordered to work on a certain problem.

The mediator should therefore animate the other developer to do ac-
tive contributions to mediation but should not enforce this. I consider it
important to write this down as part of the self-conception of the mediator.

No force to use additional software

Developers in F/OSS projects have their very own belief which software
they use for a certain task. A solution where someone is obliged to use a
specific (or new) tool will certainly be rejected. In the presented example
project the mediator will only use existing and well-known applications
and I strongly encourage this for others, too.

3.8 Dealing with problematic situations
The mediator is a job that deals with people’s reactions and depends largely
on their commitment. It is likely that conflicts or problems will arise some
time and the following paragraphs present guidelines how to deal with
such a situation.

24

Lack of interest on a conclusion

It is not seldom that a discussion on the mailing list ends before it has
really begun. Sometimes people simply do not know about a topic or miss
a question because it got buried between other posts.

The mediator should balance whether an unfinished discussion war-
rants another request and formulate one when neccessary. He can use the
reactions on this request as an indicator whether the topic is of general
interest which should be put into the database. If no conclusion can be
reached the topic can be considered not being important.

Contrary opinions until the end

When discussions in technical communities can reach no consensus and
the only outcome is a solomonic answer which for instance leaves the an-
swer to the one who fixes the problem first.

There is not much to do what the mediator can do in such a case but
writing down the problem’s nature and its suboptimal solution.

Subjectivity

When summarizing information from mailing list posts there is always
the risk of displacing someone’s opinion or presenting the circumstance
improperly. This is a problem because the summaries of discussion should
be considered as it’s consens and not the mediator’s personal opinion.

For errors in the source code F/OSS project heavily rely on peer-review
and I see no reason why this should not work for the mediation effort as
well. By making sure that everyone else besides the mediator has write-
access to the database the risk of recording something wrong or improper
can be reduced. By this means the mediator’s influence on the final.

3.9 Chosing the tools
After the mediation idea was clearly formulated and the contact with GNU
Classpath was established the missing component was a mean to be used
as a database for the collected information.

25

Wiki

There are strong reasons to use a Wiki for the collation of mediation data:
To access the data only an internet connection and a standard web browser
is needed to bring the user in the reader as well as the editor position. User
accounts are optional and are a a mean of convenience to make it easier to
track changes thereby the administrative overhead is very low.

The retrieval of old versions of a document is supported by the ver-
sioning feature which most Wiki systems have.

Finally the special Wiki formatting syntax can be learned very quickly
or can at least be imitated from the data that was already written. For
simple changes the special syntax is not even needed what makes the Wiki
usage as simple as a standard text editor. Many developers know Wikis
already because of the work done by Ward Cunningham and Wikipedia.

The ubiquitous and barrier-free editing capabilities of the Wiki turned
out to be of great help for editing the mediation data immediately after
something interesting was said on IRC.

Nevertheless the Wiki system has some flaws and should be noted.
One problem is that the pages can be edited by everyone and allows them
to deface them. We faced this problem in the beginning when several
pages where filled with Wiki spam and we had to use the history func-
tion to revert the changes.

Normally Wikis are organised as a net of links between the various
pages. Applying this organisation to the mediation Wiki would have made
it more difficult to find relevant information. I have chosen to use the Wiki
as a kind of dynamic homepage and it remains to be seen whether this
style is generally accepted upon the developers.

Another concern is that the data in the Wiki sometimes duplicates other
information sources like the “README” file, the hacking guide and the
project’s homepage and administration system (Savannah). I consider this
a kind of struggle of responsibility whose outcome depends on the project
member’s critics.

The Wiki is a very flexible tool and can be tailored to a wide area of
uses and turns out to be handy for the basic needs of the mediation effort.
However it gets problematic when the number of articles rises. Then there
is no mean to easily group or order them alphabetically.

26

Subdirectory inside the CVS

One of my first ideas was to use a special subfolder inside the source di-
rectory and manage a set of HTML or TexInfo files inside it. My intention
was that every developer should have a copy of the mediation data when
he checks out the sources from CVS allowing him to use it locally.

However for the mediation effort the database had to suppport fre-
quent and small changes. This kind of editing quickly gets tedious with
CVS because its setup is optimized for code changes: Every committed
change results in a acknowledgment mail on a special mailing list and the
description of the change has to be written into a special separate file (the
“ChangeLog”).

Another problem is that publishing the mediation data would require
additional work: The data from the repository had to be converted to
HTML and then uploaded to the project server after each change.

Project management system

It has to be noted that GNU Classpath is hosted by the Savane project
management system which is a fork of the Sourceforge software. This
system provides things like a bug, patch and task tracker, a mailing list
and a system to publish news.

While this platform is invaluable for the technical part of F/OSS devel-
opment it does not provide a mean to support mediation. Listing, organ-
ising and (re-)editing of small articles is not a feature of that system. The
core problem is that the tracker facilities have too much options and con-
figuration options that distract the reader from the written content. Fur-
thermore each change to an entry would mean that another post gets at-
tached. That is bad because I want to be able to modify an existing article.

However with some effort it would be possible to add a subset of Wiki
features into the project management software.

3.10 Implementation and problems
I chose a Wiki-based system because it seemed like the most fitting but not
without looking at the alternatives. A general introduction and criticism
to the Wiki system can be found in [DRAG03].

27

The F/OSS world has numerous Wiki systems and as the focus is not
on finding the best available tool (or create it myself) I decided to use
MoinMoin28 for practical reasons: It features versioning and was already
installed use on the target host for a licensing29 discussion.

Structure

The initial structure of the Wiki was designed to use a small number of
single pages in order to minimize the spread of information. The main
page linked to pages describing mediation and the mediation Wiki. An-
other three pages were used to list articles which are called issues, to the
following topics:

• information for beginners

• developer decisions

• current development topics

Overview

In order to find an issue a macro of the MoinMoin Wiki was used that
creates a table of contents on each page. The entries consist of the issue
titles and link to their respective issue.

Search capability

With MoinMoin it is not possible to implement a search capability that
searches the content of the issues. However it features a general search
function that simply scans the pages.

Form capability

The issues have a fixed format and it would have been nice to use some
kind of form based input system for it. While this feature is not present in
MoinMoin other Wiki systems like TWiki30 have it.

28http://moinmoin.wikiwikiweb.de/
29http://developer.classpath.org/licensing
30http://www.twiki.org

28

Cross-linking

In each issue’s body text I embedded links to the sources of relevant in-
formation and each issue has a field for references where I placed links
that deal with the topic or problem. Usually these links point to Class-
path’ mailing list archive or to various places on the web where technical
information is kept.

Variability

The look and the used fields of the issues are not strictly defined. In the
beginning the issues had more fields for administrative data but I soon
considered them dispensable because their impaired the ease of use. Al-
though I did not receive critics on the layout of the issues the editing hints
for the medation Wiki asked exactly for that.

3.11 Announcement
The official announcement of the Wiki was done on January 16th 2005 us-
ing [[http://projects.mi.fu-berlin.de/w/bin/view/SE/ThesisFOSSIMList#Ank_ndigung][this]]
mail. At this time the base structure of the Wiki was ready: It contained
some issues, a page that described editing in the mediation Wiki and an-
other one that dealt with the goals and uses of the mediation effort. In this
state working with the Wiki was possible.

4 The mediation manual
So far the mediation effort was only Classpath-specific and had no chance
of being transfered to other projects. To reach this goal I wrote the me-
diation manual as a set of project-independent guidelines. In a question
and answer style I provided the basic ideas of mediation and how it is
supposed to work in a F/OSS project.

Since the manual was supposed to be presented to other project mem-
bers I kept the number of pages low and focussed on quickly getting to
the main practical aspects of mediation.

I directed the manual towards project members as well as people who
do not have such an afilliation. In order to publish the mediation manual I

29

sent an announcement to the development mailing lists of several F/OSS
projects.

4.1 Announcement I
In this paragraph I portray my experience with the announcement of the
mediation manual using the developer mailing lists of free software projects.

4.1.1 Procedure

I wrote a small mail that contains a small presentation of the topic, a link to
the mediation manual and several ways to contact me. Around 50 projects
from Sourceforge have been selected by looking which of them met the
following criterias:

• Project is in alpha or beta state.
Sourceforge allows projects to classify their development state (plan-
ning, alpha, beta, mature, ..). I chose the alpha and beta states be-
cause these are projects where sourcecode is present as opposed to
projects in the planning state.

• At least 3 or more members.
Having 3 or more members makes sure that a certain amount of com-
munication between the developers is needed.

• Being founded before January 200431.
By requiring a minimum age I want to make it more likely that the
project created a certain amount of historical data. Having experi-
enced 12 months of development is a reasonable amount of time for
a project to evolve.

• At least one release between 2003 and 2005.
As the interest is on projects which are alive the existence of an re-
lease makes it more likely that someone is still actively working on
it.

31At the time of this writing this meant 12 months ago.

30

4.1.2 Reactions

The first reactions afters sending my announcement came from 20 mail-
ing list servers which forbade me to send mails withouth being registered.
However such systems allow that the list moderator manually permits the
mail to go on the list. I hoped that most moderators took a senseful deci-
sion since I had no bad intentions. In the end 12 list moderators allowed
the mail to pass while 8 mails where lost and another 30 reached their
target without any problems at all.

The human answers turned out mostly good. There where 3 devel-
opers who said being interested and sent me a number of syntactical and
grammatical corrections.

The maintainer of wxGlade told me that he thinks that mediation is a
good idea but regrets that his project has no stable members and he cannot
take another role for his project.

A developer of the Syllable operating system effort told me that two
people in the project are doing something that is comparable to media-
tion. Hereupon I contacted him to get to know more about this work. I
will present his answers below. A little discussion went on in the PearPC
project whose outcome I present below as well.

The NHibernate project rated the mediation approach as not being
very helpful. However they considered using a Wiki because it seemed
to be a good idea for them.

There where two less friendly reactions: One of them complained about
the manual expects having set white as the default background color and
another one found my well-meant mediation manual announcement worse
than spam.

Communication with Brent P. Newhall from Syllable

Brent Newhall is a developer of the Syllable project which aims to write an
easy to use desktop operating system. As Newhall told me he and Michael
Saunders are doing something comparable to mediation I got interested
and asked him questions about this work.

I thereby got to know that he is doing the medation role voluntarily
and without any special decision of the core developer team which he does
additionally to his programming work.

31

Newhalls work consists mainly in the writing of a system documenta-
tion for the operating system. This documentation is predominantly di-
rected at the user and not meant for project internal discussion. Newhall
writes the documentation in a Wiki at whereas he accepts comments and
changes from other people, too. The results of this work are available on-
line32. The work done by Newhall is not exactly mediation but he does a
part of it: His documentation describes system programming with Sylla-
ble which obviusly lowers the entry barrier for new developers.

Newhall mainly receives feedback for his work from the project’s mail-
inglist. Besides helpful suggestions he sometimes receives documentation
contributions and a few mails from beginners who told him that his work
made it easier for them to get into the project’s details.

I asked Newhall about the time the work consumes and he estimated,
that he spends several hours per week with fixing the documentation.

Finally I wanted to know how ardous he thinks this work is. In his
opinion this was a nonsensical question because he thinks that the level
of difficulty depends on a person’s previous knowledge. He told me that
he is a documentation writer by trade and thereby it is easy for him to do
this work for the Syllable project. However he thinks that there are a lot of
programmers which will find this a difficult task.

I asked Newhall about the work done by Saunders and found out that
he is writing developer mailing list summaries similar to the one made
by Kerneltraffic. Saunders selects interesting discussions of the last month
and comments their content. If the mail contains a request to participate
he caters on this and forwards it to his readers. The results of his work are
put on his homepage33.

Reactions of the PearcPC developers

From the PearPC project I received the answer that mediation may be very
helpful to them because they see a big discrepancy between the knowl-
edge of their developers and their users. I got to know that they have
been some small attempts to document the current state of development
using a forum thread and a Wiki. However the developers enganged with
this work suffered from lack of time whereby its slowed down. In the end

32http://www.other-space.com/sub
33http://msa.section.me.uk/sdn

32

the PearPC team likes the idea of having the development process doc-
umented but their volunteers lack of time and new ones have not been
found.

4.2 Conclusion
Measured by the number of mails I send I had expected more reactions.
However the answers I got are mostly positive and the idea of mediation
was presented to a bigger public without any noteworthy opposition. The
ones who have read my manual now know about the idea of a mediator
for F/OSS projects and I count this as a success.

5 Analysis of the practical implementation
Nearing the end of my study I wanted to receive feedback from the devel-
opers of GNU Classpath towards mediation in order to analyse my work.
I therefore framed a questionnaire which had to be filled out online using
the phpESP34 software.

The survey aims at finding out the developers’ thoughts about medi-
ation as a theoretical concept as well as its actual implementation which
I have done. An important aspect of the questionnaire is to have compa-
rable result. Most questions therefore offer 5 fixed answers constituting
the varying degrees of agreement. However in order to get more detailed
insight about the developer’s attitude a number of questions have to be
answered with free text.

The survey’s questions have been divided into the following categories:

• Knowledge of the developer about the mediation effort.

• Valuation of the mediator practical work.

• Self-assessment of the developer’s participation.

• Valuation of the mediation Wiki and the topics chosen.
34http://phpesp.sourceforge.net

33

5.1 Results
The questions about the understanding and knowledge about the media-
tion effort revealed that while a majority is quite well informed what it is
but only a narrow majority knows how to support the mediator. Conse-
quently only a few developers expressed that they know how to do medi-
ation themselves.

The free text section showed that their is a big disparity between well-
informed developers and others who do not know anything about media-
tion. The extreme cases formulate as such:

“I believe Classpath developers have been kept fairly well in-
formed.”

The exact opposite manifests itself simply with this words:

“I don’t know what it is”.

A possible answer to why this happened gives the following response:

“I think I missed the introduction of this effort (because of ab-
sence)".

Most developers agreed that mediation helps solving problems and that
it is necessary when a software project reaches a certain level of complex-
ity. In conformance with these answers most developers found that the
time spend on mediation was not lost to programming. However when
it comes to active contributions byte the developers itself there is only a
slight majority which thinks that this would be a good idea.

As the current form of medation aimed at helping and involving de-
velopers only thr respondents expressed their wish to have less technical
weekly news and information resources targetted at end users.

A bit disillusioned where the results of the participation questions:
More than half of the respondents had never written a new issue, edited an
existing one, answered mediation related questionn or posed a proposal
for a new topic.

The usage of the wikie was generally appreciated positively. Though
a slight discomfort was measurable because of its the less optimal search

34

mechanism. A proposal named usingh a WebDAV repository for media-
tion because it it has better search capabilities. Clear encouragement got
the decision to have no discussions in the Wiki.

The final category of questions, a valuation of the mediation topics,
brought some interesting ideas: While no one complained about the cho-
sen topics the free text answers demonstrated that there is a need to extend
the mediation work. Respondendt who want to extend the target audience
asnwered like this:

“I think we could do a better job at engaging the non-technical
audience that’s willing to help, [...].”

Others expressed the wish to integrate other forms of data:

“It would have been fine if the mediator had more agressively
added the task list, faq, vm integration guide and GNU Class-
path Hacker Guide into the mediation effort”

or

“Overall architecture, who’s working on what, who needs what
sort of help, licensing FAQ, schedule and priorities.”

6 Conclusion and perspective
The practical expirement showed me that there was much less resistence
than expected. Instead the answers of the survey reinforce that mediation
is beneficial for the project, that it helps new and long-established devel-
opers and that it does no harm to the development process. Furthermore
Classpath’s members wish to broaden the scope of the mediation effort
that it covers a wider audience and more topics.

However some developers have not been informed well about medi-
ation and I therefore plan to reannounce the effort along with some re-
quested changes. The aim is to make sure that every developer knows
about mediation and how to support it.

The Wiki proved to be a practical all-purpose tool that worked well
for the mediation effort. To overcome the less optimal search function

35

an integration with the project hosting software might be an interesting
option.

My initial design of the issue layout was more complicated: It con-
tained more fields of mandatory information which became hard to main-
tain for the daily work.

Contrary to my expectations it was less often needed to start discus-
sions on controversial topics. A good source for new issues where explicit
requests on the mailing list or discussions on IRC.

By participating in GNU Classpath’s development I taught myself how
to use certain tools (e.g. GNU M4, Autotools). Theses studies where nec-
essary to work as a team more effectively. Mediation can only help here
by showing newcomers what applications should be mastered.

The following incident made more limits of mediation visible: At one
point I had to compile and install a snapshot version of the GCC com-
piler suite and test its Java features. How to solve the small problems
that evolve when doing this for the first time should be learned by experi-
ence. IRC proved to be a good mean to receive answers and practical help
quickly from more experienced developers.

With the mediation manual a project independent set of guidelines
have been written. While I received mostly positive feedback about it,
a practical test is still outstanding. Furthermore it might be interesting to
integrate similar approaches like the kernel janitors, mentors or summary
writers to the mediation effort or consider mediation right from the begin-
ning of a F/OSS project.

A Invitation mail for GNU Classpath
Hi fellow GNU Classpath developers,

for some time now I am participating in this project fixing bugs and
adding functionality mainly to the java.beans package. Despite my good
knowledge of the Java language, participation in development communi-
ties and especially the GNU community, is virgin soil to me. As a result I
sensed a steep learning curve when I started helping Classpath. In the last
weeks I found myself asking a lot of questions on topics which I think are
common knowledge for a fair amount of you.

The problematic cases range from specific tool usage over project plans
to general policies. I know there is a lot of tool documentation on the net

36

and a hacking guide for Classpath which is enough for the fundamental
stuff like CVS usage or coding guidelines but what I think is still left un-
touched are questions like:

• What is the outcome of discussions?

• Whom can I ask directly for specific questions?

• What is the general direction of the project? (or: What is considered
old stuff which should be avoided in favour to newer decisions?)

Ideas on making this situation better with the intent to make the project
participation more enjoyful circled in my head and found their way on a
sheet of paper. It was clear to me that the realization of this would need
a dedicated effort which cannot be burdened onto someone’s shoulders
without intrinsic motivation.

After all I am a computer science student who got recently interested
in software engineering and was seeking a topic for his semester thesis. I
approached the SE group at my department in order to do an academic
work around my initial ideas and got positive reponse.

Now I‘d like to ask you if you welcome my effort to enhance our project
and use the experiences gained from that for academic work.

The following paragraphs describe the planned enhancements (Criti-
cism and comments are welcome):

My basic assumption is that the development process of an unstruc-
tured Free software project should be enhanced by non-invasive methods:
Any means that make the developer’s participation work less comfortable
should be avoided. Academic projects with similar goals as mine have
largely relied on producing tools which did not get adopted. In contrast
to that my approach is based around a role that I call ’mediator’.

In short the mediator’s goal in a F/OSS project is to take care that no
idea is lost. To be more specific these are some of the things the mediator
should do:

• Collect information about project member’s interests (e.g. package
responsibility).

• Remind of certain events: release, urgent documentation updates,
long-term goals.

37

• Keep an eye on the project documentation and guides.

• Be an active guide for newcomers.

• Dig up or re-introduce ideas which otherwise would get lost in mailing-
list conversations.

• Write down the results of decisions and ToDo items.

It should be noted that I consider that some of these tasks require a lot of
sensitiveness. A bad formulated ToDo list entry or project decision can
lead to unfriendly and heated debate. Furthermore the mediator does not
have any higher privileges: Changes to every recorded statement can be
made by each project member and the mediator does not make decision,
but rather collects them.

The usual work of the mediator will consist of an in-depth study of the
mailing-list (archive) but also other communication channels like Class-
path’s blog area and IRC. Apart from that he stays in touch with the other
members and updates the respective documents. The initial effort will be
on collecting the existing and upcoming data and finding a suitable way
to organize it.

The duration of my thesis is limited to 3 months. At the end of this
time we can look at the results of my work and poll whether to continue it
or not.

I hope this introduction gave you enough information to get a picture
of what I want to do. As stated above criticism and comments are wel-
come.

Privacy: I respect everyone’s privacy but its likely that I will take quotes
for my thesis from the mailing-lists (which is already publicly archived)
and perhaps from IRC conversations. In the latter case I will address the
involved persons and anonymize their statements if they want me to do
that.

B Announcement mail of the mediation Wiki
Hi,

the last days I have been entering data for a Wiki on developer.classpath.org/mediation
. This place is going to supplement the Hacker’s guide, the mailing list and

38

the homepage (FAQ) by providing useful information about developer de-
cisions. Another whole page deals with issues that might be interesting to
new hackers on GNU Classpath.

The Wiki is the most visible part of a work I call mediation. It has a page
that explains this work and its aims in detail: http://developer.classpath.org/mediation/MediationMissionPage

There are no obligations on you attached to this work. Involvement is
encouraged and appreciated but not enforced. The mission page has more
details about this.

If you have questions to anything of the above feel free to ask.
cu Robert

C Mediation Manual
This short manual presents a small set of guidelines for Free and Open
Source (FOSS) projects that should lead to a better perceived liveliness
and progress. It targets programmers, maintainers and persons currently
not involved in a project but willing to participate. The ideas presented
here are no rocket-science and you decide on your own how much of it
you want to adopt. The general idea is to have a special person - called
mediator - who manages and takes care of the project’s informations.

Motivation
In Autumn 2004 I joined the GNU Classpath35 project which is a free im-
plementation of the Java class library. I have a good knowledge in Java
and already sent patches to a few free software projects but was never
involved in such an undertaking like Classpath.

The project exists since 1998 and has a large amount of source code
and numerous developers helped the effort so it was a bit hard for me to
get into the game. A major stopper was that I did not know about the
project’s future plans, where work was needed and what design decisions
have been made in the past. Additionally I found it unsatisfying asking
questions which the next developer joining after me will ask again.

Soon I started thinking about a way to tackle this problem and how
other projects as well could profit from my considerations. The result of

35http://gnu.org/software/classpath

39

that work is presented here.

How do I know that a mediator is a good idea for my project?
If your project has one of the following problems then a mediator might
be the right person to add to your project:

• Only a small number of new developers are able to become members
of the project because of the complexity of the codebase and their
lack of understanding of the project’s state.

• Active development is hindered because programmers do not really
know what their peers are working on and how the puzzle parts fit
together.

• Certain topics are discussed once in a while but no progress seems
to take place in their regard.

• Lots of stuff was done, lots of stuff has still to be done but no one
knows how far each and every piece has gotten and where it would
be good to get started.

Why would I want to solve these problems?
The declared goal is to minimize these problems because such a situation
can kill the members’ motivation to invest time for their voluntary work.
A developer may feel the work as cumbersome and then loses interest.
The mediator is going to help the project to cope with these problems.

Why do you call the role "mediator"?
The term mediator is normally used in the context of conflict resolution
and means the person who manages a conflict between affected parties. In
the context of FOSS projects the conflict to manage is that certain persons
have special knowledge or insight while others do not. My position is that
it would be better for both parties if the knowledge gets more widespread.

40

Alright, so what is the mediator all about?
The mediator in a Free and Open Source Software project watches the com-
munication inside a project and compiles the most essential bits and pieces
into a concise form. This means that the mediator pays attention to mails
and discussions on IRC even if he is not involved or directly affected by
these.

An important aspect of his daily work is to look out for unfinished
discussions or unanswered questions. Besides that the mediator should
apply the ’newbie developer view’ to find out what could be important
for him. Finally finding out disparities like the big plan that comes up
every there and then but was never done is a good trait.

Can you be more specific about what the mediator could ac-
tually do?
Watch discussions

Discussions that are held on mailing-lists are the ideal source for informa-
tion that should be recorded. A mediator should watch all of them and
decide which are relevant to be recorded. When the final word was spo-
ken and a result is clear he should summarize the outcome and make it
publicly available (for instance on a Wiki).
It is a good idea to allow comments and modifications on the summaries
because it is likely that somebody does not like the way it was written
down. If a new discussion about the same topic arises it should be clear
that the summary has to be updated.

Find out when the same question is asked frequently

Recurring questions from users as well as fellow developers (especially
newcomers) are no anomaly these days. What you could learn from them
is that they indicate an informational gap that should be closed. If the
question has not been answered satisfactory the mediator should look up
relevant information from earlier discussions, write a question to the mail-
ing list that displays the problem and its current state. If a result can be
achieved that should be summarized and made public by the mediator.

41

Identify information that is relevant for newbies

In order to make it easier for new developers the mediator should look out
for information on coding guidelines or style and commit policies. Ideally
these should be available in form of a file in the project folder as many
projects do already. This way anyone working on the code has the style
guidelines at hand.

Besides this the mediator should look out for implementation pitfalls
like documentation that speaks contrarily to what is done in reality. The
mediator should explain which variant is the right one and how one is
supposed to cope with the problem.

In long-living projects it’s likely that it carries a legacy because of an
earlier design decision. Maybe there are two internal APIs having the
same functionality and it’s not clear for newcomers how to handle this.
The best thing would be to deprecate and remove one of them but this is
sometimes not (yet) possible and in the meantime new developers should
be at least aware of the problem. Again that is something the mediator
should look out for and describe the problem in a public summary.

Find out fellow developers wishes

By reading emails of developers thoroughly you can often spot indica-
tions of wishes. These are sometimes expressed when someone fixed a
problem but is not 100% comfortable with the current solution. The me-
diator should pay special attention to these utterances and get in contact
with the developer to find out whether this aspect is important enough to
get recorded. After the mediator made the idea publicly available others
can review and/or tackle the problem.

Ok, but what about difficulties when doing the mediating?
It’s clear that when interacting with people things do not always go round
as easily as it should. There could be the problem that the mediator does
not receive a real answer. If there is a lack of answers the topic might
no be that relevant and the mediator should drop it. Then it’s possible
that the developers reach no compromise. In this case the mediator might
summarize the opinions instead of a concise outcome.

42

Another problem is that a technical question might be to demanding
for the mediator. In this case he should simply publish a draft summary
and present it to the developers who know the topic better. If it’s wrong
there will be complaints and if it is too shallow others will ask for more
information which the mediator can then add to reinforce the draft sum-
mary.

Can you give some practical examples for something a me-
diator has done?
Here are examples from the mediator’s work at the GNU Classpath project.

Recurring question that was made available for newcomers afterwards

A developer who had seen the source code of Sun’s Java class library is
considered tainted and cannot work on the code in GNU Classpath be-
cause of the risk of copyright infringement claims. The FAQ contains a
short entry that tells this but there was no other source of information.
Newcomers asked whether they are tainted and if so what they could do
instead of coding.

In one case a developer was already waiting for a definitive answer for
about three months before he reminded the team of the issue. The medi-
ator then send a mail, stating the problem (”What is a tainted developer
allowed to work on”) and containing answers from earlier mails found in
the archive, to the list. The topic was then discussed again and a compre-
hensive outcome was available later. The mediator then put a summary of
the discussion in the Wiki.

Coding style disparity that was found and added to the newcomer’s in-
formation

While working on the code the mediator noticed documentation tags which
where not documented in the FAQ or the developer guidelines. At first
the mediator used the tags as they seemed to be used without question-
ing their meaning. However after a while he found out that the tags are
used differently depending on who edited a certain file. The situation
was unclear and so he posed a question to the mailing-list. Although two

43

developers answered the outcome was still not definite because they ut-
tered contradictory. Nevertheless the mediator added a summary about
the outcome of the discussion and put it in the Wiki. A few days later one
of the developers had read that summary and complained about its con-
tent. After having had a small discussion on IRC with both developers the
remaining bits could be solved and the summary was updated.

How much time does it require to be a mediator?
The person adopting this role decides on his own how much time is in-
vested. It should be no fulltime job although the beginning might be an
exception. The mediator should be supported by his fellow developers
who provide him with information, answer questions and tell him occa-
sionaly what is important information that should be recorded.

Why do you think the mediator should use a Wiki?
A Wiki is a really simple and powerful tool: It is to learn how to edit
and everyone has equal rights when doing it. It can be used from nearly
all Internet-connected computers and you get a version management for
free. Finally if the current mediator leaves, somebody else can take up the
work, without any need for new passwords etc.

How can I take action?
It depends on your status: If you are a maintainer or core developer you
probably have enough work to do so that you do not want to take the
mediator role yourself. That means you should find someone who want
this job by filling a request form, adding a note to your project page or
simply asking on your mailing list.

You should think about the technical requirements like installing a
Wiki. Maybe you do not like a Wiki and instead use something else (e.g.
letting mediator work on HTML pages in the repository).

Additionally the mediator should get to know where the important
information will appear. Most projects use mailing lists but some have a
Wiki instead, others rely heavily on IRC talk.

44

However if you are not yet involved with a project but would like to
be then tell the projects maintainer or core group that you are willing to
contribute as a mediator. Pointing them to this manual or using it as a base
for your invitation mail is a good idea.

Are there any project characteristics that make it likely that
a mediator will work?
A team of voluntary developers and a big amount of sourcecode.

The project should be typically community driven in contrast to enterprise
driven. The latter might be more resistant against using what the mediator
provides them. Besides that the mediator’s effort is hindered if the project
members have real-life meetings to make a design decision where he can-
not attend. Projects led by one developer are problematic because there
is no communication between team members which the mediator could
improve.

Settled design phase.

The history of the project should be long enough that design decisions are
burrowed in the code. Furthermore due to developer fluctuation certain
parts of the project may decay or bitrot because no one knows how these
are done or understands them any more after certain developers left. Such
a situation provides the informational gap which can be closed by the me-
diator.

References for the Mediation Manual
• Visit GNU Classpath’s mediation Wiki36.

• The Linux kernel spawned several interesting projects which share
the mediation idea:
Kernel Janitors37, Kerneltraffic38, Kernelnewbies39

36http://developer.classpath.org/mediation
37http://www.kerneljanitors.org
38http://kerneltraffic.org/kernel-traffic/latest.html
39http://kernelnewbies.org

45

• A janitor effort40 for Inkscape

This work (the mediation manual) is licensed under a Attribution-ShareAlike-
Creative Commons License41.

D Announcement template for mediation man-
ual

Dear %projectname% developers,
I wrote some guidelines that should help FOSS projects getting more

lively and lowering the barrier for new developers to join. You can find
them in form of a small manual here http://projects.mi.fu-berlin.de/w/bin/view/SE/ThesisFOSSIMMediationManual.

These ideas are the result of work for my bachelor thesis and have been
used successfully at the GNU Classpath project. If the topic is of interest
to you, I would be happy to receive criticism and comments concerning
the manual or the general idea.

For further discussion I have set up a mailing-list (use http://lists.spline.inf.fu-
berlin.de/mailman/listinfo/mediation_manual to subscribe or mediation_manual@lists.spline.inf.fu-
berlin.de to post unsubscribed). Please send your feedback to this list but
if you have reasons to contact me directly then just reply to this mail. In
case you answer to your project’s mailing list please CC me.

Best regards
Robert Schuster

E Survey
1. How long have you been working on GNU Classpath?

Less than a year 18.2% 2
Less than two years 9.1% 1
More than two years 72.7% 8

2. I know what the mediation effort is about.
40http://www.inkscape.org/cgi-bin/wiki.pl?InkscapeJanitors
41http://creativecommons.org/licenses/by-sa/2.0

46

I strongly disagree 18.2% 2
I weakly disagree 0% 0

I weakly agree 45.5% 5
I strongly agree 36.4% 4

3. I know how to support the mediator.

I strongly disagree 18.2% 2
I weakly disagree 18.2% 2

I weakly agree 36.4% 4
I strongly agree 27.3% 3

4. I know how to do the mediation work myself.

I strongly disagree 36.4% 4
I weakly disagree 27.3% 3

I weakly agree 36.4% 4
I strongly agree 0% 0

5. In which way could I have been informed better about the mediator
and the mediation effort?

• “don’t know, I think I missed the introduction of this effort (be-
cause of absence). Maybe this is the only thing that I could have
needed.”

• “I believe that as Classpath developers have been kept fairly
well informed of the mediation effort. Notifications of the progress
with this task have appeared on the Classpath mailing list, and
the meditation wiki, developed as part of this, has been reg-
ularly updated. The latter has proved invaluable for keeping
track of current development tasks and opinions, especially when
it is not always possible to regularly check through other less
organized mediums such as IRC or the mailing list. It is also
extremely benefical to have a permanent record of such, and to
be able to direct people to this system for further help. It also
ensures that information is not lost, which seems to have been
the case before, with conversations frequently being effectively
re-run on the mailing list.”

• “I don’t know what this is.”

47

• “I haven’t had time to contribute to Classpath lately; I saw the
email thread about mediation and I would refer to that in the
online archives if I were planning on contributing something
again that might need mediation”

• “I’m not actively contributing to classpath at this time, so it
would help if I read everything on the mailing list.”

• “It works seamlessly and well, so that I think it fulfills its role
veryu nicely.”

• “Perhaps same status reports from time to time sent to the mail-
inglist. E.g. with access statistics for the mediation wiki.”

• “weekly or bi-weekly updates to the mailinglist on what was
summarized/added. (Regular, but not too often!)”

6. Mediation helps to solve problems which emerge because work on
free software projects is unconstrained (eg. no force to code every
day, no force to read all mails on the list, ...).

I strongly disagree 9.1% 1
I weakly disagree 0% 0

I weakly agree 27.3% 3
I strongly agree 45.5% 5

I don’t know 18.2% 2

7. Mediation is necessary when a project reaches a certain level of com-
plexity (eg. number of developers, age or amount of source code).

I strongly disagree 9.1% 1
I weakly disagree 9.1% 1

I weakly agree 27.3% 3
I strongly agree 36.4% 4

I don’t know 18.2% 2

8. The time consumed on mediation should be better spend on pro-
gramming.

I strongly disagree 36.4% 4
I weakly disagree 36.4% 4

I weakly agree 0% 0
I strongly agree 18.2% 2

I don’t know 9.1% 1

48

9. Every developer of the project should actively contribute to the me-
diation effort (eg. add information on his/her current work and its
state of affairs).
I strongly disagree 18.2% 2
I weakly disagree 9.1% 1

I weakly agree 36.4% 4
I strongly agree 18.2% 2

I don’t know 18.2% 2

10. Mediation results in a data base that will be very helpful for the
project in the future.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 36.4% 4
I strongly agree 27.3% 3

I don’t know 36.4% 4

11. Thanks to the data collected by the mediation effort I have a better
overview about the work in progress.

I strongly disagree 9.1% 1
I weakly disagree 18.2% 2

I weakly agree 27.3% 3
I strongly agree 18.2% 2

I don’t know 27.3% 3

12. The additional questions asked by the mediator add noise to the
mailinglist.

I strongly disagree 54.5% 6
I weakly disagree 27.3% 3

I weakly agree 0% 0
I strongly agree 0% 0

I don’t know 18.2% 2

13. Mediation helps new developers.

49

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 9.1% 1
I strongly agree 72.7% 8

I don’t know 18.2% 2

14. Mediation helps long-established developers.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 63.6% 7
I strongly agree 27.3% 3

I don’t know 9.1% 1

15. Other projects should have a mediator following the example of GNU
Classpath.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 9.1% 1
I strongly agree 36.4% 4

I don’t know 54.5% 5

16. Who could also benefit from mediation who has not been targetted
yet?

• “Engaging users to participate into building the knowledge pool,
which would matter more for non-developer-oriented projects.
GNU Classpath (and the associated runtimes) are a little special
as they target as rather specific group of users and developers
with a high degree of technical expertise, but I think that the
expereince with the mediation effort shows that even in such
an envorinment the social interaction aspects of the collabora-
tive work can be improved by .having someone look after loose
ends, and trying to help drive conversations to conclusions. For
engaging end-users, something like ’GNU Classpath Weekly
News’ would be an interesting project to get the nice work done
within the GNU Classpath family of runtimes exposed and pre-
sented towards a larger, less technical-oriented audience.”

• “I don’t know.”

50

• “I think I don’t understand the question right? Does ’Who’
mean, ’Which other projects’? Then I think I don’t have much
overview of the internals of other projects...”

• “I think the current process already covers most roles.”
• “The newcomer is able to find resources to get them sorted,

which (most importantly) are easy to update, allowing this to
be done on a regular basis. The traditional static webpages for
Classpath tend to not see this.”

• “Infrequent developers can quickly become acquainted with cur-
rent developments.”

• “Regular developers can get a quick insight into what others are
doing, and co-ordinate efficiently.”

• “The active users of GNU classpath, the VM implementors are
not really targeted. They are involved but just because they are
involved in GNU classpath itself.”

17. In order to be an attractive idea for other projects, which things should
the mediator do in a different way?

• “don’t know”
• “For GNU Classpath we already had an irc channel and blog

aggregator/planet. I think setting up these kind of "social" in-
frastructures will help for other projects.”

• “I can’t really say. I’ve been doing similar work on Kaffe when
I started out, and having a good mediator is very useful for get-
ting a good grass-roots community going. It is less of a classical
management role, than helping the herd of cats help manage
themselves :)”

• “I don’t know.”
• “I think the current process is appropriate for GNU Classpath.

It may not be directly adaptable to another project, due to cer-
tain nuances within the existing development process. That
said, the overall concept and most of what has been achieved
here can be easily transplanted. It would be interesting to see
how mediation deals with a larger developer base, a different
rate of development, etc.”

51

• “More powerful search mechanisms.”

• “The mediator should have more intensive contact with the peo-
ple and be more active. Currently the mediation work in GNU
classpath is pretty passive. He watches mailinglists and IRC
and updates the mediation Wiki. When more in contact with
the people I think it will help even more because the problems
can be better digged up.”

18. How many new issues have you written for the wiki?

None 72.7% 8
One 27.3% 3
Two 0% 0

Three 0% 0
More than three 0% 0

19. 20. How often have you edited an existing issue in the wiki?

None 54.5% 6
One 18.2% 2
Two 9.1% 1

Three 9.1% 1
More than three 9.1% 1

20. How often have you answered questions posed by the mediator when
he was gathering information for an issue?

None 63.6% 7
One 9.1% 1
Two 9.1% 1

Three 9.1% 1
More than three 9.1% 1

21. How often did you came up with the suggestion to add something
to the wiki?

None 72.7% 8
One 0% 0
Two 27.3% 3

Three 0% 0
More than three 0% 0

52

22. What keeps you from dealing with the mediator and his work?

• “don’t know, nothing special probably”

• “He mostly just picks up the things that are interesting already.
He is doing it as a volunteer and doesn’t need guiding.”

• “I’m not sure what the mediator is or why I’d need it.”

• “It’s not a very high priority for me as yet.“

• “Kaffe.org keeps me busy all the time :(“

• “My coding emphasis shifted away from having time on Class-
path before the mediation efforts started”

• “Nothing. The mediator is a very good and needed service.”

• “Simply time, and that my own contributions to the project have
been infrequent since the beginning of this year (due to an aca-
demic project I’m working on). As I work more on Classpath,
no doubt my contributions will increase. There is no problem
with the actual process of doing so other than this.”

• “Too little time and lazyness.”

23. Chosing a wiki for the collation of data was an appropriate decision.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 45.5% 5
I strongly agree 45.5% 5

I don’t know 9.1% 1

24. Locating certain information from the mediation wiki is easy.

I strongly disagree 0% 0
I weakly disagree 18.2% 2

I weakly agree 27.3% 3
I strongly agree 27.3% 3

I don’t know 27.3% 3

25. The decision to keep the wiki free of discussions is appropiate.

53

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 27.3% 3
I strongly agree 45.5% 5

I don’t know 27.3% 3

26. Which technology would you prefer instead of a wiki and why?

• “A WebDAV repository, preferably with autoversioning. It would
make it easier to search and store different types of content.”

• “Having started to use a wiki for one of my own academic projects
in about the same time period, I can definately see the advan-
tages of using a wiki and find it a very appropriate medium for
this process. With traditional web pages, there is an inherent
deterrent to adding material, in that the person who wants to
make the changes has to work out how to access and upload a
new version, as well as needing to know how to edit the existing
HTML. The wiki removes these restrictions and means that, if
someone has an idea, they can simply go and add it to the wiki
with little fuss. I also second the idea of not putting discussion
on the wiki; there are already appropriate conduits in place for
this (IRC, the mailing list) and the wiki is then clearer for new
developers and interested parties.”

• “I don’t know. 1 I think a wiki does a pretty good job of provid-
ing a flexible structure to work with.”

• “I think a Wiki is very good for mediation work. With a wiki
several people can contribute easily and make the life of the
mediator more easy.”

• “The Wiki was nice since it allowed others to participate. But
the Wiki didn’t really have a "wiki-nature" the pages were a bit
long at times. More issues could have been split up into their
own separate pages. That would have made it easier to point
someone at just one issue. Currently some subissues have hor-
ribly long URLs. On the other hand that might have scattered
the data too much and wouldn’t have given a broad overview.
Some more experimentation with the form would be nice. But

54

the current wiki is nice because it can be adapted easily to other
forms or representing or breaking up the issues.“

• “Wiki is perfect. I have also used this in other projects and think
that Wikis are perfectly suited for bringing together distributed
teams.”

27. The topics currently managed (developer decisions, first steps, cur-
rent issues) have been chosen reasonably.

I strongly disagree 0% 0
I weakly disagree 0% 0

I weakly agree 18.2% 2
I strongly agree 45.5% 5

I don’t know 36.4% 4

28. Which additional mediation related topics should be managed?

• “I don’t know ATM. Such things should be decided on demand.
At the moment it is ok as it is.”

• “I don’t know.”

• “I think this is an appropriate set, giving that less dynamic top-
ics are already covered by the static web page (news items and
events, etc.) These three adequately deal with previous discus-
sions, newcomers and keeping abreast of developments, respec-
tively.”

• “I’d love to contribute a ’from bug to bug report and patch sub-
mission’ step by step guide for Kaffe to the wiki when I have
time to finish one, and a list of ’other things you can do to help’.
I think we could do a better job at engaging the non-technical
audience that’s willing to help, but doesn’t know how yet, for
example by providing a consistent narrative for the existance
of free runtimes and their advantages over non-free ones. I get
asked that one a lot :)”

• “It would have been fine if the mediator had more agressively
added the task list, faq, vm integration guide and GNU Class-
path Hacker Guide into the mediation effort. But I only missed
a good integration with the task list. Current issues only showed

55

what was being worked on. But not really what should be
worked on if someone had time and volunteered to do it.”

• “Most people starting GNU classpath have problems with in-
stalling and how to choose a VM suitable for their GNU class-
path version (release or –cvs). There should be some more de-
tailed instructions in how to install GNU classpath with the
VMs that support using a standalong version of GNU classpath.
And it should be descibed which VMs don‘t support this, have
their own copy of GNU classpath and why.”

• “Overall architecture, who’s working on what, who needs what
sort of help, licensing FAQ, schedule and priorities”

29. This space is for suggestions, notes on the survey and/or your an-
swers.

• “I’m sorry that this survey was kind of a bust for me but I don’t
really know what the mediation pages are or what they’re for.”

• “Mainly an excellent job is being done. I did note that the odd
item on the wiki had not been updated since its initial introduc-
tion (locales and generics spring to mind, as areas I’ve worked
on), although the mediator is not necessarily to blame for this. I
guess there is still some way to go until developers are used to
documenting what is said and done more fully.”

• “None so far.”

• “Thanks for doing this. It really was got to get some things
"on paper" which I believe have helped some people quickly
get an overview and start with the GNU Classpath project (and
community). You showed a good style by subjectively writ-
ing about the different subjects that we discussed in the project.
And I never had the feeling that you took ’sides’ on some issue.
Maybe that comes naturally to you, but it was really appreci-
ated.”

56

References
[CAH03] Crowston, Annabi, and Howison. Defining Open Source Soft-

ware Project Success. Proceedings of ICIS 2003, December 2003.
http://floss.syr.edu/publications/icis2003success.pdf.

[DRAG03] Davor Cubranic, Reid Holmes, Annie T.T. Ying, and
Gail C. Murphy. Tools for light-weight knowledge
sharing in open-source software development. 2003.
http://opensource.ucc.ie/icse2003/3rd-WS-on-OSS-
Engineering.pdf.

[Ste00] Steffen Evers. An Introduction To OpenSource
Software Development. 2000. http://user.cs.tu-
berlin.de/ tron/opensource/opensource.pdf.

57

