

Title As It Is In the Proceedings
Include Only If Paper Has a Subtitle
F. Author S. Another

Freie Universität Berlin
Conference on Fabulous Presentations, 2003

Motivation
The Basic Problem That We Studied Previous Work

Our Results/Contribution
Main Results
Basic Ideas for Proofs/Implementation

Motivation
The Basic Problem That We Studied
Previous Work

Our Results/Contribution
Main Results
Basic Ideas for Proofs/Implementation

- Use itemize a lot.
- Use very short sentences or short phrases.

You can create overlays...

- using the pause command:
- First item.

You can create overlays...

- using the pause command:
- First item.
- Second item.
- using overlay specifications:
- using the general uncover command:

You can create overlays...

- using the pause command:
- First item.
- Second item.
- using overlay specifications:
- First item.
- using the general uncover command:

You can create overlays...

- using the pause command:
- First item.
- Second item.
- using overlay specifications:
- First item.
- Second item.
- using the general uncover command:

You can create overlays...

- using the pause command:
- First item.
- Second item.
- using overlay specifications:
- First item.
- Second item.
- using the general uncover command:
- First item.

You can create overlays...

- using the pause command:
- First item.
- Second item.
- using overlay specifications:
- First item.
- Second item.
- using the general uncover command:
- First item.
- Second item.

Motivation

The Basic Problem That We Studied
Previous Work

Our Results/Contribution

Main Results
Basic Ideas for Proofs/Implementation

An old algorithm

```
int main (void)
{
    std::vector<bool> is_prime (100, true);
    for (int i = 2; i < 100; i++)
        if (is_prime[i])
            {
            std::cout << i << " ";
            for (int j = i; j < 100;
                    is_prime [j] = false, j+=i);
        }
    return 0;
}
```

```
int main (void)
{
    std::vector<bool> is_prime (100, true);
    for (int i = 2; i < 100; i++)
```

 return 0;
 \}

```
int main (void)
{
    std::vector<bool> is_prime (100, true);
    for (int i = 2; i < 100; i++)
        if (is_prime[i])
                {
        }
    return 0;
}
```

```
int main (void)
{
    std::vector<bool> is_prime (100, true);
    for (int i = 2; i < 100; i++)
        if (is_prime[i])
            {
                std::cout < i < " ";
            for (int j = i; j < 100;
                                is_prime [j] = false, j+=i);
            }
    return 0;
}
```

```
int main (void)
{
    std::vector<bool> is_prime (100, true);
    for (int i = 2; i < 100; i++)
        if (is_prime[i])
            {
            std::cout < i < " ";
            for (int j = i; j < 100;
                                is_prime [j] = false, j+=i);
            }
    return 0;
}
```

Note the use of std::.

Motivation
The Basic Problem That We Studied Previous Work

Our Results/Contribution
Main Results
Basic Ideas for Proofs/Implementation

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1,2 , and 4).

Theorem

There is no largest prime number and, in addition,

$$
\int_{\Omega} \nabla u \cdot \nabla v=-\int_{\Omega} u \Delta v+\int_{\partial \Omega} u v n
$$

Proof.

1. Suppose p were the largest prime number.
2. Thus $q+1$ is also prime and greater than p.

Theorem

There is no largest prime number and, in addition,

$$
\int_{\Omega} \nabla u \cdot \nabla v=-\int_{\Omega} u \Delta v+\int_{\partial \Omega} u v n
$$

Proof.

1. Suppose p were the largest prime number.
2. Let q be the product of the first p numbers.
3. Thus $q+1$ is also prime and greater than p.

Theorem

There is no largest prime number and, in addition,

$$
\int_{\Omega} \nabla u \cdot \nabla v=-\int_{\Omega} u \Delta v+\int_{\partial \Omega} u v n
$$

Proof.

1. Suppose p were the largest prime number.
2. Let q be the product of the first p numbers.
3. Then $q+1$ is not divisible by any of them.
4. Thus $q+1$ is also prime and greater than p.

Theorem

There is no largest prime number and, in addition,

$$
\int_{\Omega} \nabla u \cdot \nabla v=-\int_{\Omega} u \Delta v+\int_{\partial \Omega} u v n
$$

Proof.

1. Suppose p were the largest prime number.
2. Let q be the product of the first p numbers.
3. Then $q+1$ is not divisible by any of them.
4. Thus $q+1$ is also prime and greater than p.

The proof used reductio ad absurdum.

Motivation
The Basic Problem That We Studied Previous Work

Our Results/Contribution
Main Results
Basic Ideas for Proofs/Implementation

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
- Something you haven't solved.
- Something else you haven't solved.
© A．Author． Handbook of Everything． Some Press， 1990.
星 S．Someone．
On this and that．
Journal of This and That，2（1）：50－100， 2000.

