What are... Catalan numbers?

Jean-Philippe Labbé

BMS
TU Berlin
$22^{\text {nd }}$ October 2010

Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?

Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?

$$
\begin{array}{c|cccccc}
n & 3 & 4 & 5 & 6 & 7 & \cdots \\
\hline \Delta & 1 & 2 & 5 & 14 & 42 & \cdots
\end{array}
$$

Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?

Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?
Finally, Euler gave the following formula :

$$
\frac{2 \cdot 6 \cdot 10 \cdot 14 \cdot 18 \cdot 22 \cdots(4 n-10)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot(n-1)}
$$

which is now called the $(n-2)$ nd Catalan number.

Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?
Finally, Euler gave the following formula :

$$
\frac{2 \cdot 6 \cdot 10 \cdot 14 \cdot 18 \cdot 22 \cdots(4 n-10)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot(n-1)}
$$

which is now called the $(n-2)$ nd Catalan number.
This number can be rewritten as

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Segner's recurrence formula

In 1758, Johann Segner gave a recurrence formula answering Euler's problem :

Segner's recurrence formula

In 1758, Johann Segner gave a recurrence formula answering Euler's problem :

$$
C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}
$$

Segner's recurrence formula

In 1758, Johann Segner gave a recurrence formula answering Euler's problem :

$$
C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}
$$

Then, Euler essentially solved the recurrence though without giving a complete proof.

Dissection of a n-gon

Problem (Johann Pfaff \& Nicolaus Fuss (1791))

Let $n, k \in \mathbb{N}$. How many dissections of a $(k n+2)$-gon using $(k+2)$-gons are there?

Dissection of a n-gon

Problem (Johann Pfaff \& Nicolaus Fuss (1791))

Let $n, k \in \mathbb{N}$. How many dissections of a $(k n+2)$-gon using $(k+2)$-gons are there?

In 1791, Niklaus Fuss gave an answer using Segner's recurrence formula :

Dissection of a n-gon

Problem (Johann Pfaff \& Nicolaus Fuss (1791))

Let $n, k \in \mathbb{N}$. How many dissections of a $(k n+2)$-gon using $(k+2)$-gons are there?

In 1791, Niklaus Fuss gave an answer using Segner's recurrence formula :

$$
C_{n, k}=\frac{1}{n}\binom{(k+1) n}{n-1} .
$$

Dissection of a n-gon

Problem (Johann Pfaff \& Nicolaus Fuss (1791))

Let $n, k \in \mathbb{N}$. How many dissections of a $(k n+2)$-gon using $(k+2)$-gons are there?

In 1791, Niklaus Fuss gave an answer using Segner's recurrence formula :

$$
C_{n, k}=\frac{1}{n}\binom{(k+1) n}{n-1} .
$$

These numbers are now known as Fuss-Catalan numbers.

Further developments

In 1838, the Journal de mathématiques pures et appliquées, 3 involved many articles related to triangulations.

Further developments

In 1838, the Journal de mathématiques pures et appliquées, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula ;

Further developments

In 1838, the Journal de mathématiques pures et appliquées, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject ;

Further developments

In 1838, the Journal de mathématiques pures et appliquées, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject;
- Olinde Rodrigues gave a direct and elementary correspondance with product of $(n+1)$ terms.

Further developments

In 1838, the Journal de mathématiques pures et appliquées, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject;
- Olinde Rodrigues gave a direct and elementary correspondance with product of $(n+1)$ terms.

Liouville mentioned that Lamé was the first one to give such an elegant solution.

Further developments

In 1838, the Journal de mathématiques pures et appliquées, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject;
- Olinde Rodrigues gave a direct and elementary correspondance with product of $(n+1)$ terms.

Liouville mentioned that Lamé was the first one to give such an elegant solution.
Finally, Eugen Netto seems to have coined the name Catalan numbers in his book Lehrbuch der Combinatorik (1900).

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers:

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977) ;

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977) ;
- R. Stanley counts 190 structures counted by Catalan numbers (as of $21 / 08 / 2010$).

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977) ;
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).
For example

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977) ;
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).
For example
- Dyck paths (path from $(0,0)$ to (n, n) always above diagonal, using East and North steps);

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977) ;
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).
For example
- Dyck paths (path from $(0,0)$ to (n, n) always above diagonal, using East and North steps);
- Plane trees with $n+1$ vertices;

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977) ;
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).
For example
- Dyck paths (path from $(0,0)$ to (n, n) always above diagonal, using East and North steps);
- Plane trees with $n+1$ vertices;
- dimension of the space of invariants of $S L(2, \mathbb{C})$ acting on the $2 n$-th tensor power $T^{2 n}(V)$, of its two-dimensional representation V.

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers :

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977) ;
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).
For example
- Dyck paths (path from $(0,0)$ to (n, n) always above diagonal, using East and North steps);
- Plane trees with $n+1$ vertices;
- dimension of the space of invariants of $S L(2, \mathbb{C})$ acting on the $2 n$-th tensor power $T^{2 n}(V)$, of its two-dimensional representation V.
- Standard Young tableaux of shape $(n, n-1)$;

Numerous Catalan structures

During the $20^{\text {th }}$ century, many different objects were revealed to be enumerated by Catalan numbers :

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977) ;
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).
For example
- Dyck paths (path from $(0,0)$ to (n, n) always above diagonal, using East and North steps);
- Plane trees with $n+1$ vertices;
- dimension of the space of invariants of $S L(2, \mathbb{C})$ acting on the $2 n$-th tensor power $T^{2 n}(V)$, of its two-dimensional representation V.
- Standard Young tableaux of shape $(n, n-1)$;
- Linear expansions of the poset $2 \times n$;

A simple geometric proof

Bijective proof using triangulations

A simple geometric proof

Bijective proof using triangulations

$(n+2)$-gon

$(n+3)$-gon

A simple geometric proof

Bijective proof using triangulations

$(n+2)$-gon
C_{n} objects

$(n+3)$-gon
C_{n+1} objects

A simple geometric proof

Bijective proof using triangulations

$(n+2)$-gon
C_{n} objects

$(n+3)$-gon
C_{n+1} objects

A simple geometric proof

Bijective proof using triangulations

$(n+2)$-gon
$(4 n+2) C_{n}$ objects

$(n+3)$-gon
C_{n+1} objects

A simple geometric proof

Bijective proof using triangulations

$(n+2)$-gon
$(4 n+2) C_{n}$ objects

$$
(n+3) \text {-gon }
$$

$(n+2) C_{n+1}$ objects

A simple geometric proof

Bijective proof using triangulations

$(n+2)$-gon
$(4 n+2) C_{n}$ objects

$$
(n+3) \text {-gon }
$$

$(n+2) C_{n+1}$ objects

A simple geometric proof - ... continued

So, we have the following relation

A simple geometric proof - ... continued

So, we have the following relation

$$
C_{n+1}=\frac{C_{n}(4 n+2)}{(n+2)}
$$

A simple geometric proof - ... continued

So, we have the following relation

$$
C_{n+1}=\frac{C_{n}(4 n+2)}{(n+2)}
$$

with $C_{1}=1$, we get the binomial formula

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

CQFD

A more complicated example

A more complicated example

What are... Catalan numbers?

Reference

> Richard Stanley, Enumerative Combinatorics, I-II, Cambridge Studies in Advanced Mathematics (1986).

