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Graph-Theoretical Reformulation
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Pairwise sequence alignment problem:
Find alignment of maximum weight (award matches, penalize
mismatches and gaps)
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Graph-Theoretical Reformulation

C C G U GA

G A U C C

-

--

Pairwise sequence-structure alignment problem:
Find structural alignment of maximum weight (alignment costs +
awards for realized interaction matches)

interaction matches M :=
{
{l,m} ∈

(L
2

)
| l and m do not cross

}



Graph-Theoretical Reformulation

Given: Match graph GM = (V1∪V2,E1∪E2∪L), matches M,
and weights wL∪M

Find: Lines L′ ⊆ L and matches M ′ ⊆ M such that
1 ∑

l∈L′
wl + ∑

{l,m}∈M ′
wlm is maximal.

2 Lines in L′ are conflict-free.
3 Every line is incident to at most one interaction match
4 Matches in M ′ are realized, i.e., ∀{l,m} ∈ M ′ : l,m ∈ L′.
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Variables x ∈ {0,1}L,y ∈ {0,1}M

xl =

{
1 l ∈ L′

0 otherwise
y{l,m} =

{
1 match {l,m} ∈ M ′

0 otherwise

xl = 1 m

y{l ,m} = 1
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Solving the ILP with
Lagrangian Relaxation



Unifying Graph-Based View Revisited

Split matches into directed matches

~M := {(l,m),(m, l) | {l,m} ∈ M} .

A directed match (l,m) is realized iff l ∈ L′.

Select L′ ⊆ L and M ′ ⊆ ~M with
1 ∑

l∈L′
wl + ∑

(l,m)∈M ′
~w(l,m)

maximal
2 Lines in L′ are conflict-free
3 Matches in M ′ are realized
4 (l,m) ∈ M ′⇔ (m, l) ∈ M ′

5 ~w(l,m) +~w(m,l) = w{l,m}

Idea is due to [Caprara & Lancia, 04], who did this for CMO



Integer Linear Programming Formulation

Variables x ∈ {0,1}L,~y ∈ {0,1}~M

xl =

{
1 l ∈ L′

0 otherwise
~y(l,m) =

{
1 match (l,m) ∈ M ′

0 otherwise

Weights

~wlm =~wml = 1
2wlm

xl = 1 m

~ylm = 1
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Solving the Relaxation

Local view:

l

We can easily compute the profit of a line l :

pl = wl + max
m∈L,

(l,m)∈~M

(~λlm +~wlm)

Switch back to global view:

max ∑
l∈L

pl · xl

s. t. ∑
l∈C

xl ≤ 1 ∀C

x ∈ {0,1}L
This is classical
sequence alignment!
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Computing the Multipliers

We use subgradient optimization for this task:

I Start with λ0
lm = 0 for all l,m ∈ L.

I λi+1
lm =


λi

lm if si
lm := ylm− yml = 0

λi
lm− γi if si

lm = 1

λi
lm + γi if si

lm =−1

I Stepsize γi as in [Held/Karp, 71]

γi = µ
zU − zL

∑
l,m∈L

si
lm

2

Need good upper and lower bounds zU and zL.

I zU = lowest relaxation sol. value seen so far

I zL = ?
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Computing the Lower Bound zL

In each iteration, we would like to compute a new good
structural alignment.

Given: Alignment from the solution of the last iteration
Find: Best completion with interaction matches

A

AU

A A G G

ACGA

C U A U

G A C C U

U C

A U

AU

A A G G

ACGA

C A A C U

G A C C U

This is the maximum weight matching problem in general
graphs!
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T-Lara: Overall Approach

I Input: k RNA sequences

I We compute
(k

2

)
pairwise structural alignments by

Lagrangian relaxation:

. . .

C A C. . . . . .G A U G C U U A G

RNA sequences of known or un-
known structure

G A U. . . . . .C C C U A C A G G

max
∑
l∈L

wlxl +
∑
l∈L

∑
m∈L

wlmylm

s. t.
∑
l∈I

xl ≤ 1 ∀ sets of crossing lines I

ylm = yml ∀ l,m ∈ L∑
m∈L

ylm ≤ xl ∀ l ∈ L

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer

C A C G A U G C U U A G. . . . . .

G A U C C C U A C A G G. . . . . .

adapt λ-
multiplier
in each
iteration

C A C G A U G C U U A G. . . . . .

G A U C C C U A C A G G. . .

C A C. . . . . .G A U G C U U A G

G A U. . . . . .C C C U A C A G G

- -

- -

Structural alignment

max
∑
l∈L

wlxl +
∑
l∈L

∑
m∈L

(λi
lm + wlm)ylm

s. t.
∑
l∈I

xl ≤ 1 ∀ sets of crossing lines I

ylm = yml ∀ l,m ∈ L∑
m∈L

ylm ≤ xl ∀ l ∈ L

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer

I and build a library for T-Coffee [Notredame et al., 00]

I The library is a collection of local information contained in
the

(k
2

)
pairwise alignments

I T-Coffee is a popular progressive alignment tool that
respects the local information.

I Output: Multiple alignment computed by T-Coffee



Computational Results



Computational Results

LiSA: Library of Structural Alignment algorithms

LisaBase

LisaLEDA LisaCPLEX LisaVienna

LaRA

paul

threading

folding

miro

lasse
natalie

peggi

C++, open source, http://www.planet-lisa.net

http://www.planet-lisa.net


Computational Results: LaRA

Benchmark study: LaRA competitive with/outperforms
alternative approaches.



Computational Results: LaRA

I LaRA: Lagrangian RNA Alignments
I Benchmark set of manually curated structural alignments

I BraliBase 2.1 [Wilm, 06]
I contains alignments of 2, 3, 5, 7, 10, and 15 sequences
I classified according to average pairwise sequence identity

(APSI)

I Comparison to state-of-the-art tools: MARNA, STRAL,
FoldalignM, Muscle

I Quality assessment by comparing sum-of-pairs score
(COMPALIGN) (comparison to reference alignment)



Computational Results: LaRA
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Computational Results: LaRA
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Computational Results: LaRA
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Computational Results: LaRA
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Computational Results: different parameters
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Computational Results: LaRA
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I LaRA is no exact method: Structures dissimilar → large
gap.

HAVE A NICE CHRISTMAS BREAK AND A HAPPY NEW
YEAR!
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