
Please use the \AuthorTitle command defined in defs.tex instead of \Author Please
use the \AuthorTitle command defined in defs.tex instead of \Title

Skip lists: A randomized dictionary

The exposition is based on the following sources, which are all recommended read-
ing:

1. Pugh: Skip lists: a probabilistic alternative to balanced treed. Proceedings
WADS, LNCS 382, 1989, pp. 437-449

2. Sedgewick: Algorithmen in C++, 2002, Pearsons, (Chapter 13.5)

3. Lecture Script from Michiel Smid, University of the Saarland.

6000

Introduction

We consider the so called dictionary problem. Given a set S of ral numbers, store
them in a data structure such that the following three opertions can be performed
efficiently:

• Search(x): Given the real number x , report the maximal element of S ∪ {−∞}
that is at most equal to x .

• Insert(x): Given a real number x insert it into the data structure.

• Delete(x): Given a real number x delete it into the data structure.

6001

Introduction (2)

The standard data structures for this problem is the balanced binary tree. It supports
all the above operations in worst case time O(log n) and uses O(n) space.

Well known classes of balanced trees are for example AVL-trees, BB[α]-trees and
red-black-trees. In order to maintain their worst case time behaviour all those data
structures need more or less elaborate rebalancing operations which make an im-
plementation non-trivial, which in turn leads not to the best practical run times.

6002

Introduction (3)

We will introduce in this lecture an alternative, randomized data structure, the skip
list . It uses in expectation linear space and supports the above dictionary operation
in expected time O(log n) with high probability .

Why do we do this? We will see that the data structure is conceptually much simpler
and more elegant than balanced trees. Nevertheless we will exchange a worst case
runtime against an expected run time.

6003

Introduction (4)

However, the analysis will show that skip lists behave very well and are very fast in
practice (the difference is similar to the deterministic merge sort and the randomized
quicksort algorithm).

The goal of this lecture is to a) introduce you to the data structure, b) show you how
to analyze the randomized run time, and c) to introduce you to tail estimates using
Chernoff bounds.

6004

Skip lists

Throughout the lecture we assume that we can generate random, independent bits
in unit time. Let S be a set of n real numbers. Then we construct a sequence of
sets S1, S2, ... as follows:

1. For each element x ∈ S, flip a coin until zero comes up.

2. For each i ≥ 1, Si is the set of elements in S for which we flipped the coin at
least i times.

Let h be the number of sets that are constructed. Then it is clear that

∅ = Sh ⊆ Sh−1 ⊆ Sh−2 ⊆ · · · ⊆ S2 ⊆ S1 = S

6005

Skip lists (2)

The skip list for S consists then of the following:

1. For each 1 ≤ i ≤ h, the elements of Si ∪ {−∞} are stored in a sorted linked
list Li .

2. For each 1 < i ≤ h, there is a pointer from each x ∈ Li to its occurrence in
Li−1.

6006

Skip lists (3)

Here is an example. Suppose S = {1, 2, 5, 7, 8, 9, 11, 12, 14, 17, 19, 20}. Flipping
coins might lead to S1 = S, S2 = {1, 2, 5, 8, 11, 17, 20}, S3 = {2, 5, 11, 20}, S4 =
{11}, and S5 = ∅.

6007

Searching skip lists

We can now implement the search for x as follows:

1. Let yh be the only element in Lh.

2. For i = h, h − 1, ... , 2

(a) Follow the pointer from yi in Li to its occurence in Li−1.

(b) Starting in yi−1, walk to the right along Li−1, until an element is reached
that is larger than x or the end of Li−1 is reached. Let now yi−1 be the last
encountered element in Li−1 that is at most equal to x .

3. Output y1.

6008

Searching skip lists (2)

The following figure illustrates the search step (we search for element 10):

It is not hard to imagine how the insertion and deletion operations work on a skip
list.

6009

Inserting into a skip list

For inserting an element x into the dictionary we proceed as follows:

1. Run the search algorithm for x . Let y1, y2, ... , yh be the elements of L1, L2, ... , Lh
that are computed while searching. If x = y1, the x ∈ S and nothing has to be
done. Hence assume that x 6= y1.

2. Flip a coin until a zero comes up. Let l be the number of coin flips.

3. For each 1 ≤ i ≤ min(l , h), add x to the list Li immediately after yi .

4. If l ≥ h, then create new lists Lh+1, ... , Ll+1 storing the sets Sh+1 ∪ {−∞},
where each set contains x except for Sl+1 which is empty.

5. For each 1 < i ≤ l , give x in Li a pointer to its occurrence in Li−1.

6. If l ≥ h, then for each h +1 ≤ i ≤ l +1, give −∞ in Li a pointer to its occurrence
in Li−1.

6010

7. Set h = max(h, l + q).

Deleting from a skip list

1. Run the search algorithm for x . Let y1, y2, ... , yh be the elements of L1, L2, ... , Lh
that are computed while searching. If x 6= y1, the x /∈ S and nothing has to be
done. Hence assume that x = y1.

2. For each 1 ≤ i ≤ h such that x = yi delete yi from the list Li .

3. For i = h, h − 1, ...: if Li−1 only stores −∞, delete the list Li and set h = h − 1.

6011

Why are skiplists efficient? The intuition

We have seen, that mostly what we do in skip lists is to search. The rebalancing
is done by throwing a coin a few times and making local changes along the search
path.

How expensive is the search? It is the sum over all traversed path length at each
level. We expect there to be ≈ log n levels. At each level we travel to the right.
However for a fixed level we do not expect to do this long, since this would imply,
that all the elements are not in the level above.

Hence we expect to spend a constant amount of time at each level which would add
up to a total search time of O(log n). We will now prove this more formally.

6012

Why are skip lists efficient? The proofs

The size of a skip list and the running times of the search and update algorithms
are random variables. We will prove that their expected values are bound by O(n)
and O(log n) respectively.

Recall that h denotes the number of sets Si that result from our probabilistic con-
struction. How can we derive and upper bound for h?

Let x be an element of S and h(x) be the number of sets Si that contain x . Then h(x)
is a random variable distributed acccording to a geometric distribution with p = 1/2.
Hence Pr (H(x) = k) = (1/2)k and E(h(x)) = 2. That means if we look at a specific
element we only expect it to be in S1 and S2.

6013

Why are skip lists efficient? The proofs (2)

Clearly h = 1 + max{h(x) : x ∈ S}. From E(h(x)) = 2 for any x ∈ S, however, we
cannot conclude that the expected value of h is three.

We can estimate E(h) as follows. Again consider a fixed x ∈ S. It follows that for
any k ≥ 1, h(x) ≥ k if and only if the first k − 1 coin flips produced a one. That is
Pr (h(x) ≥ k = (1/2)k−1. In addition it is clear that h ≥ k + 1 if and only if there is a
x ∈ S such that h(x) ≥ k . Hence

Pr (h ≥ k + 1) ≤ n · Pr (h(x) ≥ k) =
n

2k−1

6014

Why are skip lists efficient? The proofs (3)

This estimate does not make sense for k < 1 + log n. For those values of k we can
use the trivial upper bound Pr (h ≥ k + 1) ≤ 1. Then E(h) equals:

∞∑
k=0

Pr (h ≥ k + 1) =
dlog ne∑

k=0
Pr (h ≥ k + 1) +

∞∑
k=1+dlog ne

Pr (h ≥ k + 1).

(exercise: proof the first equality, that is E(X) =
∑∞

k=1 Pr (X ≥ k) for a random
variable X that takes values {0, 1, 2, ...}.)

6015

Why are skip lists efficient? The proofs (4)

The first summation on the right hand side is at most 1 + dlog ne. The second sum
can be bounded from above by:

∞∑
k=1+dlog ne

n

2k−1 = n(1/2)dlog ne−1 ≤ n(1/2)log n−1 ≤ 2.

Hence we have proved that E(h) ≤ 3 + dlog ne.

6016

Why are skip lists efficient? The proofs (5)

The expected size of a skip list can easily be computed. Let M denote the total size
of the sets S1, S2, ... , Sh. Then M =

∑
x∈S h(x) and by linearity of expectation:

E(M) =
∑
x∈S

E(h(x)) =
∑
x∈S

2 = 2n.

If M ′ denotes the total number of nodes in a skip list, then M ′ is equal to M plus h.
Hence

E(M ′) = E(M + h) = E(M) + E(h) ≤ 2n + 3 + dlog ne.

6017

Why are skip lists efficient? The proofs (6)

What is left to do is to estimate the search costs.

Let x be a real number and let Ci denote the number of elements in the list Li that
are inspected when searching for x (We do not count the element of Li at which the
algorithm starts walking to the right. Hence, Ci counts comparisons between x and
elements of S.) The search cost is then proportional to

∑h
i=1(1 + Ci).

Again we cannot use linearity of expectation since h is a random variable. Again
the trick is to fix an integer A and analyze the search cost up to a level A and above
level A separately (and differently).

6018

Why are skip lists efficient? The proofs (7)

We first estimate the search level above A, i.e., the total costs in the lists
LA+1, LA+2, ... , Lh. Since the cost is at most equal to the total size of these lists,
its expected value is at most equal to the expected value of MA :=

∑h
i=A+1 | Li |.

How do we estimate this value? We first note that the lists Li , A + 1 ≤ i ≤ h, form a
skip list for SA+1. Hence we have:

E(MA) =
n∑

k=0
E(MA | | SA+1 |= k) · Pr (| SA+1 |= k)

where E(MA | | SA+1 |= k) is the expected size of a skip list with k elements. We
have already seen that this is O(k).

6019

Why are skip lists efficient? The proofs (8)

Hence we only need to compute Pr (| SA+1 |= k). Since | SA+1 |= k if and only if out
of the n elements of S exactly k reach the level A + 1, we have:

Pr (| SA+1 |= k) =
(n

k

)
(
1

2
)Ak (1 − (

1

2
)A)n−k .

Setting p = 1
2

A
, we infer that the expected value of MA is proportional to:

n∑
k=0

k ·
(n

k

)
pk (1 − p)n−k =

n∑
k=1

n ·
(n − 1

k − 1

)
pk (1 − p)n−k

= n · p
n−1∑
k=0

(n − 1

k

)
pk (1 − p)n−1−k

= n · p(p + (1 − p))n−1

= n · p

Hence the expected search cost above level A is bounded by O(n/2A).

6020

Why are skip lists efficient? The proofs (9)

Next we estimate the expected search cost in the lists L1, L2, ... , LA. Recall that Ci is
the number of elements searched when searching for x . We use again conditional
expectation. Let li(x) be the number of elements in Li that are at most equal to x .
Then

E(Ci) =
n∑

k=1
E(Ci | li(x) = k) · Pr (li(x) = k).

6021

Why are skip lists efficient? The proofs (10)

Assume that li(k) = k . Also assume that there is an element in Li that is larger than
x . Then Ci = j if and only if the largest j − 1 elements of Li that are at most equal
to x do not appear in Li+1, but the element that immediately precedes these j − 1
elements does appear in Li+1.

6022

Why are skip lists efficient? The proofs (11)

Hence

Pr (Ci = j | li(x) = k) ≤ (
1

2
)j−1, 0 ≤ j ≤ k .

This inequality also holds if x is at least equal to the maximal element of Li . From
this we obtain:

E(Ci | li(x) = k) =
k∑

j=0
j · Pr (Ci = j | li(x) = k)

≤
k∑

j=0

j

2j−1

≤ 4.

(exercise.)

6023

Why are skip lists efficient? The proofs (12)

This, in turn implies that

E(Ci) ≤
n∑

k=1
4 · Pr (li(x) = k) = 4

It follows that the expected search cost up to level A is proportional to:

E(
A∑

i=1
(1 + Ci)) =

A∑
k=1

(1 + E(Ci)) ≤ 5A

Summarizing we have shown that the expected search time for element x is
bounded by:

O(
n

2A + A).

Setting A to log n we obtain the required bound of O(log n).

6024

Tail estimates: Chernoff bounds

So far we proved bounds on the expected size, search time and update time for a
skip list. In this section we conder so called tail estimates.

That is, we estimate the probability that the actual search time deviates significantly
from its expected value. For example assume for a moment that the constant in the
O(log n) term for the search time is one. Then we want to estimate the probability
that the actual search time is at least t · log n.

We could derive an estimate using Markov’s inequality .

6025

Tail estimates: Chernoff bounds (2)

Lemma 1. Let X be a random variable that takes non-negative values, and let µ be
the expected value of X . Then for any t > 0, Pr (Y ≥ tµ) ≤ 1

t .

Proof: Let s = tµ. Then

µ =
∑
x

x · Pr (X = x)

≥
∑
x≥s

x · Pr (X = x)

≥
∑
x≥s

s · Pr (X = x)

= s · Pr (X ≥ s)

6026

Tail estimates: Chernoff bounds (3)

Hence the probability that the actual search time is at least t · log n is less than or
equal to 1/t .

This is not very impressive. The probablity that the search time is more than 100
times its expected value is at most 1/100. So if this bounds was tight one search in
a hundred takes more than 100 times the time of the average search.

6027

Tail estimates: Chernoff bounds (4)

In this section we will se that Chernoff bounds give a much tighter estimate. We will
prove that the probablity that the search time exceeds t · log n is less than or equal
to ≈ n−t/8 for t ≥ 5.

Hence in a skip list of 1000 elements, the probability that the search time is more
than 100 times its expected value is 10−38 which in practice means, it will never
occur. (Even for t = 50 the bound is still 10−19, and for t = 10 the probability is still
only ≈ 2 · 10−4).

6028

Tail estimates: Chernoff bounds (5)

Markov’s inequality holds for any non-negative random variable. The Chernoff tech-
nique applies to random variables X that can be written as the sum

∑n
i=1 Xi of

mutually independent random variables Xi .

(Variables are called (mutually) independent if their joint density function is the prod-
uct of the individual density functions. Beware that mutual independence is different
than pairwise independence! (exercise)).

In such cases much better bounds can be obtained.

6029

Tail estimates: Chernoff bounds (6)

So let X1, X2, X3 ... , Xn be a sequence of mutually independent random variables
and let X =

∑n
i=1 Xi .

The moment generating function (mgf) for a (discrete) random variable Y is defined
as

mY (λ) = E(eλY) =
∑
y

eλy · Pr (Y = y)

As the name suggests the function is used to easily generate the moments of the
random variable Y . Clearly m(0) = 1 and it is easy to show that µ = m′(0) and
σ2 = m′′(0) − µ2 (exercise).

6030

Tail estimates: Chernoff bounds (7)

In the case of X , which is a sum of n independent variables, mX (λ) =
∏n

i=1 mXi
(λ)

and of course the mean value of X is the derivate of the mgf at position 0 which is
simply the product of all means of the Xi .

Or written down:

E(eλX) = E(eλ(X1+···+Xn)) =
n∏

i=1
E(eλXi).

6031

Tail estimates: Chernoff bounds (8)

Now let s > 0 and λ > 0. Since X ≥ s if and only if eλX ≥ eλs, we have
Pr (X ≥ s) = Pr (eλX ≥ eλs). By applying Markov’s inequality to the non negative
random variable eλX , we get

Pr (X ≥ s) = Pr (eλX ≥ eλs) ≤ e−λs · E(eλX).

This yields:

Pr (X ≥ s) ≤ e−λs ·
n∏

i=1
E(eλXi), for s > 0 and λ > 0.

This is the basic inequality we work with. To estimate Pr (X ≥ s) we need bound
on E(eλXi). Of course those bounds depend on the probability distribution of Xi .
We will now illustrate the technique using the geometric distribution with parameter
p = 1/2.

6032

Tail estimates: Chernoff bounds (9)

Let T be the number of flips we need until a one comes up in a series of coin flips.
Then Pr (T = k) = (1/2)k for k ≥ 1 and E(T) = 2. Now assume we are interested
in Tn which is the number of flips we need until we obtain a one exactly n times (i.e.
T = T1).

6033

Tail estimates: Chernoff bounds (10)

If we define the random variables Xi as the number of flips between the (i − 1)−st
(excluding) and the i-th one (including), then Xi is distributed according to a ge-
ometric distribution. (This property is also called the memoryless property of the
geometric or exponential distribution).

Then Tn =
∑n

i=1 Xi , where each Xi is distributed according to a geometric dis-
tribution and the expected value is E(Tn) = 2n, and Markov’s inequality gives
Pr (Tn ≥ (2 + t)n ≤ 2

2+t).

6034

Tail estimates: Chernoff bounds (11)

For 0 < λ < log 2 we have

E(eλXi) =
∞∑

k=1
eλk · Pr (Xi = k) =

∞∑
k=1

(eλ/2)k =
eλ

2 − eλ

We now apply our basic inequality with s = (2 + t)n, where t > 0 and get

Pr (Tn ≥ (2 + t)n) ≤ e−λ(2+t)n(
eλ

2 − eλ
)n = (

e−λ(1+t)

2 − eλ
)n

Now we choose λ such that the term on the right hand side is minimized (exercise)
and find λ = log(1 + t

2+t).

6035

Tail estimates: Chernoff bounds (12)

Hence we have

Pr (Tn ≥ (2 + t)n) ≤ (1 + t/2)n(1 −
t

2 + 2t
)(1+t)n.

Since 1 − x ≤ e−x for all x , we have

(1 −
t

2 + 2t
)1+t ≤ (e

−t
2+2t)1+t = e−t/2.

Moreover, 1 + t/2 ≤ et/4 for t ≥ 3. This proves that for t ≥ 3

Pr (Tn ≥ (2 + t)n) ≤ etn/4 · e−tn/2 = e−tn/4.

Compare this with the bound obtained from Markov’s inequality (which was 2
2+t)!

6036

Tail estimates: Chernoff bounds (13)

We can subsume our finding in the following theorem:
Theorem 2. Let X1, X2, ... , Xn be mutually indpendent random variables and as-
sume that each Xi is distributed according to a geometric distribution. Let Tn =

∑
Xi ,

then E(Tn) = 2n and for any t ≥ 3 holds:

Pr (Tn ≥ (2 + t)n) ≤ etn/4 · e−tn/2 = e−tn/4.

Corollary 3. Let c ≥ 1 be a constant and let m be a positive integer. Further let
n = c · ln m. Then for any s ≥ 5 it holds

Pr (Tdne ≥ sn) ≤ m
−(s−2)c

4 .

6037

Tail estimates: Skip lists

We can now use the above results to prove tail estimates for the size, search time
and update time for a skip list. Consider again a skip list for n elements. Let M
denote the total size of the sets Si , ... , Sh and let M ′ denote the total number of
nodes of the skip list. Then M ′ = M + h. We have seen that E(M ′) = E(M + h) ≤
2n + 3 + dlog ne.

Now we are interested in the probability that M ′ is at least equal to (2 + t)n. Clearly
if M ′ ≥ (2 + t)n, then h ≥ tn

2 or M ≥ (2 + t
2)n. As a result,

Pr (M ′ ≥ (2 + t)n) ≤ Pr (h ≥
tn

2
) + Pr (M ≥ (2 +

t

2
)n).

6038

Tail estimates: Skip lists (2)

In the beginning of the lecture we estimated already the first probability on the right
hand side and have:

Pr (h ≥
tn

2
) ≤

n

2
tn
2−2

= eln n+2ln2− tn
2 ln2 ≤ e

−tn
8 .

It remains to bound Pr (M ≥ (2 + t
2)n).

Remember that h(x) was defined as the number of sets Si that contain x . Then the
random variables h(x) for x ∈ S are all mutually independent and have a geomet-
ric distribution. Since M =

∑
x∈S h(x) we can apply above theorem for geometric

distributions and get:

Pr (M ≥ (2 +
t

2
)n) ≤ e

−tn
8 .

That means it is extremly unlikely that a skip list deviates much from its expected
size.

6039

Tail estimates: Skip lists (3)

The analysis of the search time is a bit more complicated. Let x ∈ R and let c ≥ 1 be
a constant. We want to estimate the probability that the searching for x takes more
then c · log n steps. We analyze this by considering the cost up to level dc · log ne
and above level dc · log ne separately.

Let A denote the number of nodes traversed in levels 1+dc ·log ne, 2+dc ·log ne, ... , h
when searching for x . We proved before that the expected value of A is bounded by
O(n

2dc·log ne) = O(1
nc ln 2−1). Hence Markov’s inequality yields:

Pr (A ≥ 1) ≤ E(A) = O(
1

nc ln 2−1).

6040

Tail estimates: Skip lists (4)

Now let B be the number of nodes traversed in the lower levels. We want to ex-
press B now as the sum of mutually independent random variables each distributed
according to a geometric distribution.

In order to do this we give an slightly different but equivalent construction of a skip
list.

Let S1 = S = 〈s11 < s12 < ... < s1n1
〉, where n1 = n. Moreover, let l1(x) be the

number of elements of S1 that are at most equal to x .

Let i ≥ 1 and assume that we have constructed Si = 〈s11 < s12 < ... < s1ni
〉 with

ni =| Si |. Let li(x) =| {y ∈ Si : y ≤ x} |.

6041

Tail estimates: Skip lists (5)

We do the following:

1. We flip our coin ni − li(x) times.

2. We flip the coin li(x) times.

3. If the previous li(x) flips only produced zeros, then we flip the coin until we get
a one.

Let fi be the total number of flips made during these stages, and denote the outcome
by Fi1, Fi2, ... , Fifi . Note that fi ≥ ni . We proceed as follows:

6042

Tail estimates: Skip lists (6)

1. Define Si+1 = {sij : 1 ≤ j ≤ ni and Fij = 1}, ni+1 =| Si+1 | and li+1(x) = {y ∈
Si+1 : y ≤ x}.

2. We define the random variable Xi as the number of flips after stage 1 until the
first 1 comes up.

3. We define the random variable Ci as the minimum of 1 + li(x) and Xi .

The construction stops as soon as the empty set Si+1 has been constructed.

6043

Tail estimates: Skip lists (7)

Hence we have now

∅ = Sh ⊂ Sh−1 ⊆ Sh−2 ⊆ ... ⊆ S2 ⊆ S1 = S.

and random variables X1, X2, ... , Xh−1 and C1, C2, ... , Ch−1. This construction de-
fines a probability distribution on skip lists, which is the same as that of our previous
two constructions.

6044

Tail estimates: Skip lists (8)

Lets go back to the analysis of the search time. For convenience, we define Ci = 0
fo all i ≥ h. Recall that B is the number of nodes traversed in the levels 1, 2, ... , dc ·
log ne. Hence we have B =

∑dc·log ne
i=1 Ci . The means we have written B as the sum

of random variables.

However, since Ci depends on li(x), which depends on ni which in turn depends on
ni−1, we see that the variables C1, C2, ... , Ch−1 are not mutually independent.

6045

Tail estimates: Skip lists (9)

On the other hand, it is easy to see that Ci ≤ Xi for all 1 ≤ i ≤ h − 1. Moreover,
the random variables Xi , 1 ≤ i ≤ h − 1 are mutually independent and each one
is distributed according to a geometric distribution. For i ≥ h, let Xi also denote a
random variable distributed according to a geometric distribution. Since

B =
dc·log ne∑

i=1
Ci ≤

dc·log ne∑
i=1

Xi ,

we infer

P(B ≥ s · c · log n) ≤ Pr (
dc·log ne∑

i=1
Xi ≥ s · c · log n)

The above Corollary immediately gives:

P(B ≥ s · c · log n) ≤ n
−(s−2)c

4 ≤
1

n
sc
8

,

for c ≥ 1 and s ≥ 5.

6046

Tail estimates: Skip lists (10)

Now we can give the tail estimate for the search time. Let T denote the total number
of nodes trversed when searching for x . Then T = A + B. Moreover, if T ≥ 1 + 5c ·
log n, then A ≥ 1 or B ≥ 5x · log n. Hence

Pr (T ≥ 1 + 5c · log n) ≤ Pr (A ≥ 1) + Pr (B ≥ 5c · log n).

Our results for the two probabilities on the right hand side imply for c ≥ 1,

Pr (T ≥ 1 + 5c · log n) = O(n1−c·ln 2 + n−5c/8).

Taking c = t/5, where t ≥ 5 we get

Pr (T ≥ 1 + t log n) = O(n1−(t ·ln 2)/5 + n−t/8)

6047

