Maximum flow problem

Network flows

- Network
 - Directed graph G = (V, E)
 - Source node $s \in V$, sink node $t \in V$
 - Edge capacities: cap : $E \to \mathbb{R}_{\geq 0}$
- Flow: $f: E \to \mathbb{R}_{\geq 0}$ satisfying
 - 1. Flow conservation constraints

$$\sum_{e: \text{target}(e)=v} f(e) = \sum_{e: \text{source}(e)=v} f(e), \text{ for all } v \in V \setminus \{s, t\}$$

2. Capacity constraints

 $0 \leq f(e) \leq cap(e)$, for all $e \in E$

Maximum flow problem

• Excess:

$$excess(v) = \sum_{e:target(e)=v} f(e) - \sum_{e:source(e)=v} f(e)$$

- If *f* is a flow, then excess(v) = 0, for all $v \in V \setminus \{s, t\}$
- Value of a flow: val(f) = excess(t)
- Maximum flow problem:

$$\max\{\operatorname{val}(f) \mid f \text{ is a flow in } G\}$$

• Can be seen as a linear programming problem.

Lemma.

If *f* is a flow in *G*, then excess(t) = -excess(s).

Maximum flow problem (2)

Proof. We have

$$excess(s) + excess(t) = \sum_{v \in V} excess(v) = 0.$$

- First "=": excess(v) = 0, for $v \in V \setminus \{s, t\}$
- Second "=": For any edge e = (v, w), the flow through e appears twice in the sum, positively in excess(w) and negatively in excess(v).

Cuts

• A *cut* is a partition (S, T) of V, i.e., $T = V \setminus S$.

- (S, T) is an (s, t)-cut if $s \in S$ and $t \in T$.
- Capacity of (S, T)

$$\operatorname{cap}(S,T) = \sum_{E \cap (S \times T)} \operatorname{cap}(e)$$

• A cut is saturated by f if f(e) = cap(e), for all $e \in E \cap (S \times T)$, and f(e) = 0, for all $e \in E \cap (T \times S)$.

Lemma.

If f is a flow and (S, T) an (s, t)-cut, then

$$\operatorname{val}(f) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) \leq \operatorname{cap}(S, T).$$

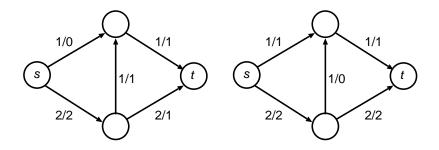
If S is saturated by f, then val(f) = cap(S, T).

Maximum flow problem (2)

Proof. We have

$$val(f) = -excess(s) = -\sum_{u \in S} excess(u)$$
$$= \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e)$$
$$\leq \sum_{e \in E \cap (S \times T)} cap(e)$$
$$= cap(S)$$

For a saturated cut, the inequality is an equality.



Remarks.

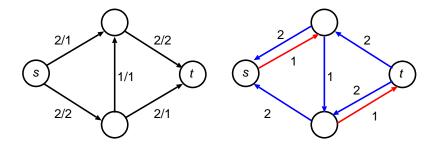
- A saturated cut proves the optimality of a flow.
- To show: for every maximal flow there is a saturated cut proving its optimality.

Residual network

The residual network G_f for a flow f in G = (V, E) indicates the capacity unused by f. It is defined as follows:

- *G_f* has the same node set as *G*.
- For every edge e = (v, w) in G, there are up to two edges e' and e'' in G_f :
 - 1. if $f(e) < \operatorname{cap}(e)$, there is an edge e' = (v, w) in G_f with residual capacity $r(e') = \operatorname{cap}(e) f(e)$.

2. if f(e) > 0, there is an edge e'' = (w, v) in G_f with residual capacity r(e'') = f(e).



Theorem.

Let *f* be an (*s*, *t*)-flow, let G_f be the residual graph w.r.t. *f*, and let *S* be the set of all nodes reachable from *s* in G_f .

- If $t \in S$, then *f* is not maximum.
- If $t \notin S$, then S is a saturated cut and f is maximum.

Proof (part 1).

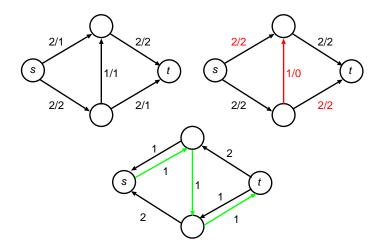
If t is reachable from s in G_f , then f is not maximal.

- Let p be a simple path from s to t in G_f .
- Let δ be the minimum residual capacity of an edge in *p*.
 By definition, *r*(*e*) > 0, for all edges *e* in *G*_f. Therefore, δ > 0.
- Construct a flow f' of value val $(f) + \delta$:

$$f'(e) = \begin{cases} f(e) + \delta, & \text{if } e' \in p \\ f(e) - \delta, & \text{if } e'' \in p \\ f(e), & \text{if neither } e' \text{ nor } e'' \text{ belongs to } p. \end{cases}$$

• f' is a flow and $val(f') = val(f) + \delta$.

Example.



Proof (part 2).

If t is not reachable from s in G_f , then f is maximal.

- Let S be the set of nodes reachable from s in G_f , and let $T = V \setminus S$.
- There is no edge (v, w) in G_f with $v \in S$ and $w \in T$.
- Hence
 - f(e) = cap(e), for any $e \in E \cap (S \times T)$, and
 - f(e) = 0, for any $e \in E \cap (T \times S)$.
- Thus S is saturated and, by the Lemma, f is maximal.

Max-Flow-Min-Cut Theorem

Theorem.

The maximum value of a flow is equal to the minimum capacity of an (s, t)-cut:

 $\max\{\operatorname{val}(f) \mid f \text{ is a flow}\} = \min\{\operatorname{cap}(S, T) \mid (S, T) \text{ is an } (s, t) \text{-cut}\}.$

Ford-Fulkerson Algorithm

- 1. Start with the zero flow, i.e., f(e) = 0, for all $e \in E$.
- 2. Construct the residual network G_f .
- 3. Check whether *t* is reachable from *s*.
 - if not, stop.
 - if yes, increase flow along an *augmenting path*, and iterate.

Analysis

- Let |V| = n and |E| = m.
- Each iteration takes time O(n+m).
- If capacities are arbitrary reals, the algorithm may run forever.

Integer capacities

- Suppose capacities are integers, bounded by C.
- $v^* :=$ value of maximum flow can be up to (n-1)C.
- All flows constructed are integral (proof by induction).
- Every augmentation increases flow value by at least 1.
- Running time is $O((n+m)v^*) \rightarrow pseudo-polynomial.$

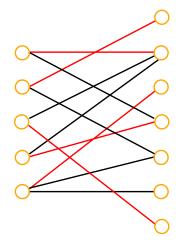
Edmonds-Karp Algorithm

• Compute *shortest* augmenting path, i.e., a shortest path from *s* to *t* in the residual network *G_f*, where each edge has distance 1.

- Apply, e.g., breadth-first search
- Resulting maximum flow algorithm can be implemented in $O(nm^2)$.

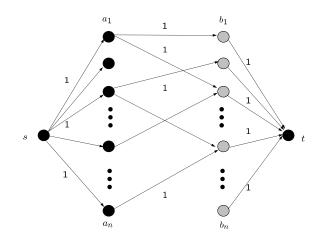
Bipartite matching

- G = (V, E) undirected graph
- *Matching*: Subset of edges $M \subseteq E$, no two of which share an endpoint.
- Maximum matching: Matching of maximum cardinality.
- *Perfect matching*: Every vertex in *V* is matched.
- *G* bipartite: $V = A \cup B, A \cap B = \emptyset$, and each edge in *E* has one end in *A* and one end in *B*.



Reduction to a network flow problem

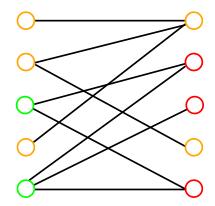
- Add a source *s* and edges (*s*, *a*) for $a \in A$, with capacity 1.
- Add a sink *t* and edges (b, t) for $b \in B$, with capacity 1.
- Direct edges in G from A to B, with capacity 1.
- Integral flows f correspond to matchings M, with val(f) = |M|.
- Ford-Fulkerson takes time O((m+n)n), since $v^* \le n$.
- This can be improved to $O(\sqrt{n}m)$.



Marriage theorem

Theorem (Hall).

A bipartite graph $G = (A \cup B, E)$, with |A| = |B| = n, has a perfect matching if and only if for all $B' \subseteq B$, $|B'| \leq |N(B')|$, where N(B') is the set of all neighbors of nodes in B'.



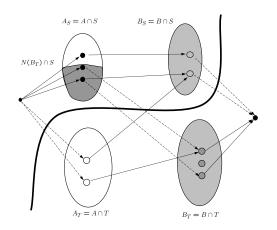
Proof

- Let (*S*, *T*) be an (*s*, *t*)-cut in the corresponding network.
- Let $A_S = A \cap S$, $A_T = A \cap T$, $B_S = B \cap S$, $B_T = B \cap T$.

$$cap(S, T) = \sum_{e \in E \cap S \times T} cap(e)$$

= $|A_T| + |B_S| + |N(B_T) \cap A_S|$
 $\geq |N(B_T) \cap A_T| + |N(B_T) \cap A_S| + |B_S|$
= $|N(B_T)| + |B_S|$
 $\geq |B_T| + |B_S| = |B| = n$

• By the max-flow min-cut theorem, the maximum flow is at least *n*.



König's theorem

• G = (V, E) undirected graph

- $C \subseteq V$ is a vertex cover if every edge of G has at least one end in C.
- Lemma: For any matching *M* and any vertex cover *C*, we have $|M| \leq |C|$.
- Theorem (König). For a bipartite graph G,

 $\max\{|M|: M \text{ a matching }\} = \min\{|C|: C \text{ a vertex cover }\}.$

Network connectivity

- G = (V, E) directed graph, $s, t \in V, s \neq t$.
- **Theorem (Menger).** The maximum number of *arc-disjoint* paths from *s* to *t* equals the minimum number of arcs whose removal disconnects all paths from node *s* to node *t*.
- **Theorem (Menger).** The maximum number of *node-disjoint* paths from *s* to *t* equals the minimum number of nodes whose removal disconnects all paths from node *s* to node *t*.

Duality in linear programming

• Primal problem

$$z_{P} = \max\{\mathbf{c}^{\mathsf{T}} x \mid Ax \leq b, x \in \mathbb{R}^{n}\}$$
(P)

Dual problem

$$w_D = \min\{b^T u \mid A^T u = \mathbf{c}, u \ge 0\}$$
(D)

General form

	(P)			(D)	
min	c ^T x		max	и ^т b	
w.r.t.	$A_{i*}x \geq b_i$,	$i \in M_1$	w.r.t	$u_i \ge 0$,	$i \in M_1$
	$A_{i*}x \leq b_i$,	$i \in M_2$		$u_i \leq 0$,	$i \in M_2$
	$A_{i*}x=b_i,$	$i \in M_3$		u _i free,	$i \in M_3$
	$x_j \ge 0$,	$j \in N_1$		$(A_{*j})^T u \leq c_j,$	$j \in N_1$
	$x_j \leq 0$,	$j \in N_2$		$(A_{*j})^T u \geq c_j,$	$j \in N_2$
	<i>x_j</i> free,	$j \in N_3$		$(A_{*j})^T u = c_j,$	$j \in N_3$

Duality theorems

• Weak duality If x* is primal and u* is dual feasible, then

$$c^T x^* \leq z_P \leq w_D \leq b^T u^*.$$

- Strong duality If both (P) and (D) have a finite optimum, then $z_P = w_D$.
- Only four possibilities
 - 1. z_P and w_D are both finite and equal.
 - 2. $z_P = +\infty$ and (D) is infeasible.
 - 3. $w_D = -\infty$ and (P) is infeasible.

4. (P) and (D) are both infeasible.

Maximum flow and duality

• Primal problem

$$\begin{array}{ll} \max & \sum_{e: \text{source}(e)=s} x_e - \sum_{e: \text{target}(e)=s} x_e \\ \text{s.t.} & \sum_{e: \text{target}(e)=v} x_e - \sum_{e: \text{source}(e)=v} x_e = 0, \quad \forall v \in V \setminus \{s, t\} \\ & 0 \leq x_e \leq c_e, \qquad \quad \forall e \in E \end{array}$$

Dual problem

$$\begin{array}{ll} \min & \sum_{e \in E} c_e y_e \\ \text{s.t.} & z_w - z_v + y_e \geq 0, \quad \forall e = (v, w) \in E \\ & z_s = 1, z_t = 0 \\ & y_e \geq 0, \qquad \forall e \in E \end{array}$$

Maximum flow and duality (2)

- Let (y^*, z^*) be an optimal solution of the dual.
- Define $S = \{v \in V \mid z_v^* > 0\}$ and $T = V \setminus S$.
- (*S*, *T*) is a minimum cut.
- Max-flow min-cut theorem is a special case of linear programming duality.

Total unimodularity

- A matrix A is totally unimodular if each subdeterminant of A is 0,+1 or -1.
- Theorem (Hoffman and Kruskal). A ∈ Z^{m×n} is totally unimodular iff the polyhedron P = {x ∈ ℝⁿ | Ax ≤ b, x ≥ 0} is integral, i.e., P = conv(P ∩ Zⁿ), for any b ∈ Z^m.
- Corollary. $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff for any $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$ both optima in the LP duality equation

$$\max\{c' x \mid Ax \le b, x \ge 0\} = \{\min b' u \mid A' u \ge c, u \ge 0\}$$

are attained by integral vectors (if they are finite).

• **Proposition.** The constraint matrix A arising in a maximum flow problem is totally unimodular.

References

- K. Mehlhorn: Data Structures and Efficient Algorithms, Vol. 2: Graph Algorithms and NP-Completeness, Springer, 1986, http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html
- R. K. Ahuja, T. L. Magnanti and J. L. Orlin: Network flows. Prentice Hall, 1993
- S. Krumke and H. Noltemeier: Graphentheoretische Konzepte und Algorithmen. Teubner, 2005