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Maximum flow problem
Network flows

e Network

— Directed graph G = (V,E)
— Source node s € V, sink nodet € V

— Edge capacities: cap: E — Rxg
e Flow: f : E — R satisfying
1. Flow conservation constraints

f(e) = Z f(e), forallv e V\ {s,t}

e:target(e)=v e:source(e)=v

2. Capacity constraints
0 <f(e) <cap(e), foralle € E

Maximum flow problem

Excess:

excess(v) = f(e)— f(e)
e:targ;(e)zv e:souga(e)zv

If f is a flow, then excess(v) =0, forallv € V \ {s,t}

Value of a flow: val(f) = excess(t)

Maximum flow problem:
max{val(f) | f is a flow in G}

e Can be seen as a linear programming problem.

Lemma.
If f is a flow in G, then excess(t) = —excess(s).

Maximum flow problem

Proof. We have
excess(s) +excess(t) = z excess(v) = 0.
vev

e First “=": excess(v) =0, forv € V \ {s,t}

e Second “=": For any edge e = (v,w), the flow through e appears twice in the sum, positively in excess(w)
and negatively in excess(v).

Cuts

e Acutis a partition (S,T) of V,i.e, T =V \S.
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e (S,T)isan (s,t)-cutifseSandteT.
e Capacity of (S,T)
cap(S,T) = Z cap(e)
EN(SXT)
e A cutis saturated by f if f(e) = cap(e), foralle cEN(S xT),and f(e)=0, foralle € EN(T x S).

Lemma.
If f is a flow and (S, T) an (s, t)-cut, then

val(f) = Z f(e) — Z f(e) < cap(S,T).
ecENSXT) ecEN(T xS)
If S is saturated by f, then val(f) = cap(S, T).

Maximum flow problem

Proof. We have

val(f) = —excess(s)=— Zexcess(u)
ues
= z f(e)— Z f(e)
ecENGXT) e€EN(T xS)
< cap(e)
eeEF%SxT)
= cap(S)

For a saturated cut, the inequality is an equality.

Remarks.

e A saturated cut proves the optimality of a flow.

e To show: for every maximal flow there is a saturated cut proving its optimality.
Residual network

The residual network G¢ for a flow f in G = (V, E) indicates the capacity unused by f. It is defined as follows:

e Gs has the same node set as G.
e For every edge e = (v,w) in G, there are up to two edges €’ and e” in Gs:

1. if f(e) < cap(e), there is an edge €’ = (v,w) in G; with residual capacity r(e’) = cap(e) — f(e).
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2. iff(e) > 0, there is an edge e” = (w, V) in G with residual capacity r(e”) = f(e).

Theorem.
Let f be an (s,t)-flow, let G; be the residual graph w.r.t. f, and let S be the set of all nodes reachable from s in
Gs.

e Ift €S, then f is not maximum.

e Ift €S, then S is a saturated cut and f is maximum.
Proof (part 1).
If t is reachable from s in G¢, then f is not maximal.

e Letp be asimple path fromstotin Gs.

e Let O be the minimum residual capacity of an edge in p.
By definition, r(e) > 0, for all edges e in G;. Therefore, & > 0.

e Construct a flow f/ of value val(f) + &:

fe)+d, ifeep
f'ley={ f(e)—5, ife’cp
f(e), if neither e’ nor e” belongs to p.

e f’is aflow and val(f') = val(f) + d.

Example.

Proof (part 2).

If t is not reachable from s in Gy, then f is maximal.
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Let S be the set of nodes reachable from s in Gy, and let T =V \ S.

There is no edge (v,w) in Gy withv € Sandw € T.

Hence

— f(e) =cap(e), foranye € EN(S x T), and
— f(e) =0, foranye € EN(T X S).

Thus S is saturated and, by the Lemma, f is maximal.
Max-Flow-Min-Cut Theorem

Theorem.
The maximum value of a flow is equal to the minimum capacity of an (s, t)-cut:

max{val(f) | f is a flow} = min{cap(S,T) | (S,T) is an (s,t)-cut} .
Ford-Fulkerson Algorithm

1. Start with the zero flow, i.e., f(e) =0, foralle € E.
2. Construct the residual network Gs.
3. Check whether t is reachable from s.
e if not, stop.
e if yes, increase flow along an augmenting path, and iterate.

Analysis

e Let|V|=nand |E|=m.
e Each iteration takes time O(n+m).

e [f capacities are arbitrary reals, the algorithm may run forever.
Integer capacities

e Suppose capacities are integers, bounded by C.

e v* :=value of maximum flow can be up to (n — 1)C.

e All flows constructed are integral (proof by induction).
e Every augmentation increases flow value by at least 1.

e Running time is O((n +m)v*) — pseudo-polynomial.
Edmonds-Karp Algorithm

e Compute shortest augmenting path, i.e., a shortest path from s to t in the residual network G¢, where
each edge has distance 1.
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Apply, e. g., breadth-first search

Resulting maximum flow algorithm can be implemented in O(nm?).

Bipartite matching

G = (V,E) undirected graph

Matching: Subset of edges M C E, no two of which share an endpoint.

Maximum matching: Matching of maximum cardinality.

Perfect matching: Every vertex in V is matched.

G bipartite: V =AUB,ANB =0, and each edge in E has one end in A and one end in B.

/

N

Reduction to a network flow problem

Add a source s and edges (s, a) for a € A, with capacity 1.

Add a sink t and edges (b, t) for b € B, with capacity 1.

Direct edges in G from A to B, with capacity 1.

Integral flows f correspond to matchings M, with val(f) = |M|.

Ford-Fulkerson takes time O ((m+n)n), since v* < n.

This can be improved to O(y/nm).
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Marriage theorem

Theorem (Hall).
A bipartite graph G = (AUB, E), with |A| = |B| = n, has a perfect matching if and only if for all B’ C B, [B’| < |[N(B'),
where N(B’) is the set of all neighbors of nodes in B’.

Proof

e Let (S, T) be an (s,t)-cut in the corresponding network.
e LetAs=ANS,Ar =ANT,Bs=BNS,Br=BNT.

cap(S,T)

cap(e)
ecENSXT

|Ar|+[Bs|+[N(Br)NAs]

> IN(Br)NAr|+|N(Br)NAs|+|Bs|
= IN(B7)|+|Bs]
> |Br|[+|Bs[=[B|=n

e By the max-flow min-cut theorem, the maximum flow is at least n.

Bs=BnNnS

Konig's theorem

e G =(V,E) undirected graph
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C CV is a vertex cover if every edge of G has at least one end in C.
e Lemma: For any matching M and any vertex cover C, we have |M| < |C].
e Theorem (Konig). For a bipartite graph G,

max{|M|: M a matching } = min{|C| : C a vertex cover }.
Network connectivity

e G =(V,E)directed graph, s,t €V,s #t.

e Theorem (Menger). The maximum number of arc-disjoint paths from s to t equals the minimum number
of arcs whose removal disconnects all paths from node s to node t.

e Theorem (Menger). The maximum number of node-disjoint paths from s to t equals the minimum number
of nodes whose removal disconnects all paths from node s to node t.

Duality in linear programming

e Primal problem
zp =max{c'x | Ax < b,x € R"} P)

e Dual problem
wp =min{b"u |ATu=c,u>0} (D)

General form

(P (D)

min c'x max u'b
w.rt. Aux >by, i €M w.r.t u; >0, i € My
Aix <bj, i€M; u <0, i €My
AiX =bj, i €Ms u; free, i € M3
x>0, jEN; ATu<g, jEN;
X <0, JeEN (Ag)Tu>c, jEN
x; free, j€Nj (Ag)Tu=c¢;, jEN;3

Duality theorems

e Weak duality If x* is primal and u* is dual feasible, then

c'™x* <zp <wp <b'u*.

e Strong duality If both (P) and (D) have a finite optimum, then zp = wp.
e Only four possibilities

1. zp and wp are both finite and equal.
2. zp =+ and (D) is infeasible.

3. wp = —m and (P) is infeasible.
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4. (P) and (D) are both infeasible.
Maximum flow and duality

e Primal problem

max Xe — Xe
e:source(e)=s e:target(e)=s
s.t. Xe — Xe=0, WveV\{st}
e:target(e)=v e:source(e)=v
0 < Xe < Ce, Ve €E
e Dual problem
min CeYe

s.t. Zw —Zy+Ye >0, Ve=(v,w)€EE
zs=1,2.=0
Ye >0, Ve cE

Maximum flow and duality ¢

Let (y*,z*) be an optimal solution of the dual.

DefineS={veV |z, >0}andT =V \S.

(S,T) is a minimum cut.

Max-flow min-cut theorem is a special case of linear programming duality.

Total unimodularity

A matrix A is totally unimodular if each subdeterminant of A is 0,+1 or —1.

Theorem (Hoffman and Kruskal). A € Z™*" is totally unimodular iff the polyhedron P = {x € R" | Ax <
b,x > 0} is integral, i.e., P = conv(P NZ"), for any b € Z™.

Corollary. A € Z™*" is totally unimodular iff for any b € Z™, ¢ € Z" both optima in the LP duality equation
max{c'x | Ax <b,x >0} ={minb"u | ATu >c,u >0}

are attained by integral vectors (if they are finite).

Proposition. The constraint matrix A arising in a maximum flow problem is totally unimodular.
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