The Simplex algorithm: Introductory example

The following introduction to the Simplex algorithm is from the book Linear Programming by V. Chvátal.
Example:

$$
\begin{aligned}
\max & 5 x_{1}+4 x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
& 4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
& 3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

The Simplex algorithm: Introductory example (2)

Introduce slack variables and obtain standard form ${ }^{1}$:

$$
\begin{aligned}
x_{4} & =5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5} & =11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6} & =8-3 x_{1}-4 x_{2}-2 x_{3} \\
z & =5 x_{1}+4 x_{2}+3 x_{3} \\
\max z & \text { subject to } \quad x_{1}, \ldots, x_{6} \geq 0
\end{aligned}
$$

Slack variables: x_{4}, x_{5}, x_{6}
Decision variables: x_{1}, x_{2}, x_{3}

The Simplex algorithm: Introductory example

Idea of the Simplex algorithm: Start with feasible solution x_{1}, \ldots, x_{6} and try to find another feasible solution $\bar{x}_{1}, \ldots, \bar{x}_{6}$ with

$$
5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}>5 x_{1}+4 x_{2}+3 x_{3} .
$$

Iterate until optimal solution is found.
Problem 1: Find first feasible solution. In our example it is easy:

$$
x=(0,0,0,5,11,8)
$$

will do and yields $z=0$.
The Simplex algorithm: Introductory example
(4)

Problem 2: Finding a better feasible solution.
Looking at z, we have to increase x_{1}, x_{2}, or x_{3}.

[^0]Blackboard calculations tell us: $x_{1} \leq \frac{5}{2}, x_{1} \leq \frac{11}{4}, x_{1} \leq \frac{8}{3}$, so

$$
\bar{x}=\left(\frac{5}{2}, 0,0,0,1, \frac{1}{2}\right) \quad \text { yielding } \quad z=\frac{25}{2} .
$$

Finding an even better solution? Not so easy. We rewrite our system of equations such that, again, nonzero variables appear at the left-hand side and zero variables on the right-hand side (thus, x_{1} and x_{4} swap their positions):

$$
x_{1}=\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}
$$

The Simplex algorithm: Introductory example

New system:

$$
\begin{aligned}
& x_{1}=\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
& x_{5}=1+5 x_{2}+2 x_{4} \\
& x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
& z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{aligned}
$$

Next step: increase x_{3}.
Blackboard calculations: $x_{3}=1$, yielding $(2,0,1,0,1,0)$ and $z=13$.

The Simplex algorithm: Introductory example

New system:

$$
\begin{aligned}
x_{3} & =1+x_{2}+3 x_{4}-2 x_{6} \\
x_{1} & =2-2 x_{2}-2 x_{4}+x_{6} \\
x_{5} & =1+5 x_{2}+2 x_{4} \\
z & =13-3 x_{2}-x_{4}-x_{6}
\end{aligned}
$$

We are done!
Why? We have found a solution with $z=13$ and every feasible solution must satisfy $z=13-3 x_{2}-x_{4}-x_{6}$ and $x_{2}, x_{4}, x_{6} \geq 0$.

The Simplex algorithm

Given a problem

$$
\begin{array}{rll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1,2, \ldots, m \\
& x_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

we introduce slack variables and arrive at our first dictionary

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
z & =\sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

$i=1,2, \ldots, m$
which characterizes each feasible solution as $n+m$ non-negative numbers $x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}$, where x_{n+1}, \ldots, x_{n+m} depend on x_{1}, \ldots, x_{n}.

The Simplex algorithm (2)

An iteration of the Simplex algorithm consists of replacing a feasible solution

$$
x_{1}, \ldots, x_{n+m} \quad \text { by } \quad \bar{x}_{1}, \ldots, \bar{x}_{n+m}
$$

with

$$
\sum_{j=1}^{n} c_{j} \bar{x}_{j}>\sum_{j=1}^{n} c_{j} x_{j} .^{2}
$$

We do so by choosing a (non-basic) variable x_{N} from the right-hand side with positive objective function coefficient and increasing its value maximally, thereby setting a left-hand side (basic) variable x_{B} to zero.

We compute a new dictionary where x_{N} is left (basic) and x_{B} is right (non-basic).

The Simplex algorithm

Definition: (dictionary)

- The equations in a dictionary express m of the variables x_{1}, \ldots, x_{m+n} and the objective function z in terms of the remaining n variables.
- Every solution of a dictionary must be also a solution of the first dictionary.

A dictionary is feasible if setting the non-basic variables to zero and evaluating the basic variables yields a feasible solution.

The Simplex algorithm moves from feasible dictionary to feasible dictionary.

The Simplex algorithm

Are we done? No!

- How do we find the first feasible dictionary? (Initialization)
- Can we always find an entering and leaving variable to construct the next dictionary? (Iteration)
- Does the process terminate? (Termination)

The Simplex algorithm

(5)

[^1]We start with the second issue (Iteration):
Consider the last row of a dictionary

$$
z=z^{*}+\sum_{j \in N} \bar{c}_{j} x_{j}
$$

where N contains the indices of non-basic variables. If $\bar{c}_{j} \leq 0$ for all $j \in N$, we are done.
Otherwise, choose any variable with positive coefficient for entering the basis, e. g., the one with the largest coefficient \bar{c}_{j}.
Now the leaving variable is that basic variable whose non-negativity imposes the most stringent upper bound on the increase of the entering variable.

Problems:

1. no candidate
2. multiple candidates

The Simplex algorithm (6)

Problem 1 (no candidate). Consider

$$
\begin{aligned}
x_{2} & =5+2 x_{3}-x_{4}-3 x_{1} \\
x_{5} & =7-3 x_{4}-4 x_{1} \\
z & =5+x_{3}-x_{4}-x_{1}
\end{aligned}
$$

No restrictions on x_{3}. Setting $x_{3}=t$ yields

$$
x=(0,5+2 t, t, 0,7) \quad \text { with } \quad z=5+t
$$

that is, the problem is unbounded. Of course, this holds in general.
Problem 2 (multiple candidates). In this case, we may choose any candidate. This leads, however, to degenerate solutions.

The Simplex algorithm (7)

A basic solution is degenerate if one or more basic variables are at zero.
This might have an annoying side effect: non-increasing iterations.
Example:

$$
\begin{aligned}
x_{4} & =1-2 x_{3} \\
x_{5} & =3-2 x_{1}+4 x_{2}-6 x_{3} \\
x_{6} & =2+x_{1}-3 x_{2}-4 x_{3} \\
z & =2 x_{1}-x_{2}+8 x_{3}
\end{aligned}
$$

If, as in this example, only a few iterations are degenerate, this is not a big problem. Otherwise, we may cycle, which is a serious problem!

Cycling.
Can the Simplex go through an endless sequence of iterations without ever finding an optimal solution?
Yes:

$$
\begin{aligned}
x_{5} & =-\frac{1}{2} x_{1}+\frac{11}{2} x_{2}+\frac{5}{2} x_{3}-9 x_{4} \\
x_{6} & =-\frac{1}{2} x_{1}+\frac{3}{2} x_{2}+\frac{1}{2} x_{3}-x_{4} \\
x_{7} & =1-x_{1} \\
z & =10 x_{1}-57 x_{2}-9 x_{3}-24 x_{4}
\end{aligned}
$$

Now, choosing the entering variable according to the "largest coefficient" rule and the leaving variable according to the "lexicographic" rule, we will see the same dictionary again after six iterations!

[^0]: ${ }^{1}$ Note: Chvátal calls the form on the previous slide standard form.

[^1]: ${ }^{2}$ As we will later see, the inequality is not always strict.

