Linear programming

Optimization Problems

• General optimization problem

$$\max\{z(x) \mid f_i(x) \le 0, x \in D\}$$
 or $\min\{z(x) \mid f_i(x) \le 0, x \in D\}$

where $D \subseteq \mathbb{R}^n$, $f_j : D \to \mathbb{R}$, for j = 1, ..., m, $z : D \to \mathbb{R}$.

• Linear optimization problem

$$\max\{c^{\mathsf{T}}x \mid Ax \leq b, x \in \mathbb{R}^n\}, \text{ with } c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

- Integer optimization problem: $x \in \mathbb{Z}^n$
- 0-1 optimization problem: $x \in \{0, 1\}^n$

Feasible and optimal solutions

• Consider the optimization problem

$$\max\{z(x) \mid f_i(x) \le 0, x \in D, j = 1, ..., m\}$$

- A feasible solution is a vector $x' \in D \subseteq \mathbb{R}^n$ such that $f_i(x') \leq 0$, for all j = 1, ..., m.
- The set of all feasible solutions is called the feasible region.
- An optimal solution x* is a feasible solution such that

$$z(x^*) = \max\{z(x) \mid f_j(x) \le 0, x \in D, j = 1, ..., m\}.$$

- Feasible or optimal solutions
 - need not exist,
 - need not be unique.

Transformations

- $\min\{z(x) \mid x \in S\} = \max\{-z(x) \mid x \in S\}.$
- $f(x) \ge a$ if and only if $-f(x) \le -a$.
- f(x) = a if and only if $f(x) \le a \land -f(x) \le -a$.

Lemma

Any linear programming problem can be brought to the form

 $\max\{c^T x \mid Ax \le b\} \quad \text{or} \quad \max\{c^T x \mid Ax = b, x \ge 0\}.$

Proof: a) $a^T x \leq \beta \rightsquigarrow a^T x + x' = \beta, x' \geq 0$ (slack variable) b) x free $\rightsquigarrow x = x^+ - x^-, x^+, x^- \geq 0$.

Practical problem solving

- 1. Model building
- 2. Model solving
- 3. Model analysis

Example: Production problem

A firm produces *n* different goods using *m* different raw materials.

- b_i: availabe amount of the *i*-th raw material
- a_{ij}: number of units of the *i*-th material needed to produce one unit of the *j*-th good
- c_j : revenue for one unit of the *j*-th good.

Decide how much of each good to produce in order to maximize the total revenue \rightarrow *decision variables x_j*.

Linear programming formulation

max	<i>c</i> ₁ <i>x</i> ₁	+	•••	+	c _n x _n		
w.r.t.	a ₁₁ x ₁	+	•••	+	a _{1n} x _n	\leq	b ₁ ,
	÷				÷		
	<i>a_{m1}x</i> ₁	+		+	a _{mn} x _n	\leq	b _m ,
	<i>x</i> ₁ ,				, x _n	\geq	0.

In matrix notation:

$$\max\{c^T x \mid Ax \leq b, x \geq 0\},\$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$.

Geometric illustration

max	x 1	+	<i>x</i> ₂		
w.r.t.	<i>x</i> ₁	+	2 <i>x</i> ₂	\leq	3
	2 <i>x</i> ₁	+	<i>x</i> ₂	\leq	3
	<i>x</i> 1	,	x ₂	\geq	0

Polyhedra

- Hyperplane $H = \{x \in \mathbb{R}^n \mid a^T x = \beta\}, a \in \mathbb{R}^n \setminus \{0\}, \beta \in \mathbb{R}$
- Closed halfspace $\overline{H} = \{x \in \mathbb{R}^n \mid a^T x \leq \beta\}$
- Polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- Polytope $P = \{x \in \mathbb{R}^n \mid Ax \le b, I \le x \le u\}$

The feasible set

$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

- $P \subseteq \overline{H}, H \cap P \neq \emptyset$ (Supporting hyperplane)
- $F = P \cap H$ (Face)
- $\dim(F) = 0$ (Vertex)
- dim(*F*) = 1 (*Edge*)
- $\dim(F) = \dim(P) 1$ (Facet)
- *P pointed: P* has at least one vertex.

Illustration

Simplex Algorithm: Geometric view

Linear optimization problem

$$\max\{c^T x \mid Ax \le b, x \in \mathbb{R}^n\}$$
(LP)

Simplex-Algorithm (Dantzig 1947)

- 1. Find a vertex of P.
- 2. Proceed from vertex to vertex along edges of *P* such that the objective function $z = c^T x$ increases.
- 3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which *z* is unbounded.