Linear programming

Optimization Problems

- General optimization problem

$$
\max \left\{z(x) \mid f_{j}(x) \leq 0, x \in D\right\} \text { or } \min \left\{z(x) \mid f_{j}(x) \leq 0, x \in D\right\}
$$

where $D \subseteq \mathbb{R}^{n}, f_{j}: D \rightarrow \mathbb{R}$, for $j=1, \ldots, m, z: D \rightarrow \mathbb{R}$.

- Linear optimization problem

$$
\max \left\{c^{T} x \mid A x \lesssim b, x \in \mathbb{R}^{n}\right\}, \text { with } c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

- Integer optimization problem: $x \in \mathbb{Z}^{n}$
- 0-1 optimization problem: $x \in\{0,1\}^{n}$

Feasible and optimal solutions

- Consider the optimization problem

$$
\max \left\{z(x) \mid f_{j}(x) \leq 0, x \in D, j=1, \ldots, m\right\}
$$

- A feasible solution is a vector $x^{\prime} \in D \subseteq \mathbb{R}^{n}$ such that $f_{j}\left(x^{\prime}\right) \leq 0$, for all $j=1, \ldots, m$.
- The set of all feasible solutions is called the feasible region.
- An optimal solution x^{*} is a feasible solution such that

$$
z\left(x^{*}\right)=\max \left\{z(x) \mid f_{j}(x) \leq 0, x \in D, j=1, \ldots, m\right\}
$$

- Feasible or optimal solutions
- need not exist,
- need not be unique.

Transformations

- $\min \{z(x) \mid x \in S\}=\max \{-z(x) \mid x \in S\}$.
- $f(x) \geq a$ if and only if $-f(x) \leq-a$.
- $f(x)=a$ if and only if $f(x) \leq a \wedge-f(x) \leq-a$.

Lemma

Any linear programming problem can be brought to the form

$$
\max \left\{c^{\top} x \mid A x \leq b\right\} \quad \text { or } \quad \max \left\{c^{\top} x \mid A x=b, x \geq 0\right\}
$$

Proof: a) $a^{T} x \leq \beta \rightsquigarrow a^{T} x+x^{\prime}=\beta, x^{\prime} \geq 0 \quad$ (slack variable)
b) x free $\rightsquigarrow x=x^{+}-x^{-}, x^{+}, x^{-} \geq 0$.

Practical problem solving

1. Model building
2. Model solving
3. Model analysis

Example: Production problem

A firm produces n different goods using m different raw materials.

- b_{i} : availabe amount of the i-th raw material
- $a_{i j}$: number of units of the i-th material needed to produce one unit of the j-th good
- c_{j} : revenue for one unit of the j-th good.

Decide how much of each good to produce in order to maximize the total revenue \rightsquigarrow decision variables x_{j}.

Linear programming formulation

$$
\begin{array}{cc}
\max & c_{1} x_{1}+\cdots+c_{n} x_{n} \\
\text { w.r.t. } & a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& \vdots \\
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, \quad \cdots \quad, x_{n} \geq 0
\end{array}
$$

In matrix notation:

$$
\max \left\{c^{\top} x \mid A x \leq b, x \geq 0\right\}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}$.

Geometric illustration

max	$x_{1}+x_{2}$
w.r.t.	$x_{1}+2 x_{2} \leq 3$
	$2 x_{1}+x_{2} \leq 3$
	$x_{1}, x_{2} \geq 0$

Polyhedra

- Hyperplane $H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=\beta\right\}, a \in \mathbb{R}^{n} \backslash\{0\}, \beta \in \mathbb{R}$
- Closed halfspace $\bar{H}=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq \beta\right\}$
- Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- Polytope $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b, I \leq x \leq u\right\}$

The feasible set

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

- $P \subseteq \bar{H}, H \cap P \neq \emptyset \quad$ (Supporting hyperplane)
- $F=P \cap H \quad$ (Face)
- $\operatorname{dim}(F)=0 \quad$ (Vertex)
- $\operatorname{dim}(F)=1 \quad$ (Edge)
- $\operatorname{dim}(F)=\operatorname{dim}(P)-1 \quad$ (Facet)
- P pointed: P has at least one vertex.

Illustration

Simplex Algorithm: Geometric view

Linear optimization problem

$$
\begin{equation*}
\max \left\{c^{\top} x \mid A x \leq b, x \in \mathbb{R}^{n}\right\} \tag{LP}
\end{equation*}
$$

1. Find a vertex of P.
2. Proceed from vertex to vertex along edges of P such that the objective function $z=c^{\top} x$ increases.
3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which z is unbounded.
