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Lagrangian Relaxation: An overview
Sources for this lecture:

• D. Bertsimas and J. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific, 1997

• M. L. Fisher. An applications oriented guide to Lagrangian relaxation. Interfaces, 15:1021, 1985.

General idea

Lagrangian relaxation is a technique well suited for problems where the constraints can be divided into two sets:

• “good” constraints, with which the problem is solvable very easily

• “bad” constraints that make it very hard to solve.

The main idea is to relax the problem by removing the “bad” constraints and putting them into the objective
function, assigned with weights (the Lagrangian multiplier ). Each weight represents a penalty which is added to
a solution that does not satisfy the particular constraint.

General idea (2)

We are given the following integer linear problem:

ZIP := min cT x (1)

Ax ≥ b (2)

Dx ≥ d (3)

x integer (4)

with A,D,b,c,d having integer entries. Let

X := {x integral | Dx ≥ d} .

We assume that optimizing over the set X can be done very easily, whereas adding the “bad” constraints Ax ≥ b
makes the problem intractable.

General idea (3)

Therefore, we introduce a dual variable for every constraint of Ax ≥ b. The vector λ ≥ 0 is the vector of dual
variables (the Lagrangian multipliers) that has the same dimension as vector b. For a fixed λ ≥ 0, consider the
relaxed problem

Z (λ) := min cT x + λT (b−Ax)

Dx ≥ d

x integer .

By assumption, we can efficiently compute the optimal value for the relaxed problem with a fixed vector λ.

Lemma (Weak duality).
Z (λ) provides a lower bound on ZIP.

Proof. Blackboard.
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General idea (4)

Of particular interest is the tightest of all bounds, that is

ZD := max
λ≥0

Z (λ) .

The problem above is called the Lagrangian dual.

If X is a finite set, say X = {x1, ... ,xm}, then Z (λ) can also be written as

Z (λ) = min
i=1,...,m

{cT x i + λT (b−Ax i )} .

The function Z (λ) is the minimum of a finite set of linear functions of λ and therefore it is concave and piecewise
linear.

A good time to see an example. . . (blackboard)
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General idea (2)

It is important to note, however, that—unlike in linear programming—integer linear programming does not have
strong duality theory. This implies that the optimal value of the Lagrangian dual does not have to be the same as
the optimal value of the original (primal) problem. Instead of

ZD = ZIP

the following holds:
ZD ≤ ZIP .

Solving the Lagrangian Dual
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How should the λ be set, such that the gap between Z (λ) and ZIP is as small as possible (or zero in the best
case)?

For sake of simplicity, we assume that X is finite and can be written as X = {x1, ... ,xm}. Then, as described
above, Z (λ) can be written as

Z (λ) = min
i=1,...,m

{cT x i + λT (b−Ax i )}

with fi = b−Ax i and hi = cT x i this can be rewritten as

Z (λ) = min
i=1,...,m

{hi + λf T
i } ,

a piecewise linear and concave function.

Solving the Lagrangian Dual (2)

If Z (λ) was differentiable then, the classical approach of maximizing the function would be the steepest ascent
method, that is computing a sequence of iterations with

λt+1 = λt + γt∇Z (λt ) .

We are following the gradient at the current position, with a specified stepsize γ, to reach points with a higher
function value.

In our case, this evaluates to
λt+1 = λt + γt (b−Ax t ) .

Solving the Lagrangian Dual (3)

Unfortunately, this procedure is no longer valid for our function, since it is not differentiable everywhere.

Therefore, we adapt the method at points where the function is non-differentiable → subgradient optimization.

Subgradient optimization method.

1. Choose a starting point λ0, e. g., λ0 = 0; t = 0.

2. Choose a subgradient st = b−Ax t of the function Z at λt . If st = 0 → STOP, because the optimal value
has been reached.

3. Compute λt+1 = max{0,λt + γtst}, where γt denotes the stepsize1.

4. Increment t and go to 2.

Solving the Lagrangian Dual (4)

The definition of stepsize γ is of crucial importance, since the speed of convergence depends heavily on the
stepsize. One can prove that the process converges to ZD—assuming it is finite—for any stepsize γt with

∞

∑
t=0

γt = ∞

and
lim
t→∞

γt = 0 .

One example for such a sequence is γt = 1
t+1 . In practice this does not always lead to quick convergence, hence

other stepsize sequences are chosen.

1We need to cut off at zero because the multipliers have to remain non-negative.
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Solving the Lagrangian Dual (5)

Held and Karp proposed the following formula for adapting the stepsize:

γt = µt Z ∗−Z (λt )
m

∑
i=1

(bi −
n

∑
j=1

aijx
t )2

,

where

• Z ∗ is the value of the best solution for the original problem found so far
• µt is a decreasing adaption parameter with 0 < µ0 ≤ 2 and

µt+1 =

{
αµt ZD did not increase in the last T iterations

µt otherwise

with parameters 0 < α < 1 and T > 1.
• the denominator is the square of the length of the subgradient vector b−Ax t .


