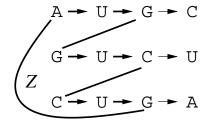
Mixed cycles

For a given choice of alignment edges we can efficiently check whether the connected components allow such a partial order by searching for a *mixed cycle Z*, which is a cycle in the extended alignment graph G = (V, E, H):



A mixed cycle contains at least one arc $a \in H$ and hence at least two alignment edges $e, f \in E$.

Mixed cycles (2)

A mixed cycle Z is called *critical*, if all nodes in $Z \cap a^p$ occur consecutively in Z, for all sequences $a^p \in A$. That is, the cycle enters and leaves each sequence at most once.

We have the following result:

Lemma. A subset $T \subseteq E$ is a trace, if and only if G' = (V, T, H) does not contain a critical mixed cycle.

Proof. Exercise.

Given edge weights for the alignment edges, we can reformulate the Maximum Weight Trace problem as follows:

Problem. Given an extended alignment graph G = (V, E, H), find a subset $T \subseteq E$ with maximal weight such that G = (V, T, H) does not contain a mixed cycle.

Integer LP for the MWT problem

How to encode the Maximum Weight Trace Problem problem as an integer LP?

Assume we are given an extended alignment graph G = (V, E, H), with $E = \{e_1, e_2, \dots, e_n\}$.

Each edge $e_i \in E$ is represented by a variable x_i , that will take on value 1, if e_i belongs to the best scoring trace, and 0, if not.

Hence, our variables are $x_1, x_2, ..., x_n$.

To ensure that the variables are *binary*, we add constraints $x_i \leq 1$ and $x_i \geq 0$ and require the x_i to be integer.

Additional inequalities must be added to prevent mixed cycles.

ILP for the MWT problem (2)

For example, consider:

$$\begin{array}{c|c} A \twoheadrightarrow U \twoheadrightarrow G \twoheadrightarrow C \\ e_{l} & e_{2} & e_{4} \\ G \twoheadrightarrow U \twoheadrightarrow C \twoheadrightarrow U \end{array}$$

There are three possible critical mixed cycles in the graph, one using e_1 and e_3 , one using e_2 and e_3 , and one using e_2 and e_4 . We add the constraints

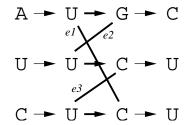
$$x_1 + x_3 \le 1,$$

 $x_2 + x_3 \le 1,$
 $x_2 + x_4 \le 1.$

to ensure that none of the critical mixed cycles is realized.

ILP for the MWT problem (3)

For example, consider:



with three edges e_1 , e_2 , and e_3 that all participate in a critical mixed cycle. The constraint

$$x_1 + x_2 + x_3 \le 2$$

prevents them from being realized simutaneously.

ILP for the MWT problem (4)

In summary, given an extended alignment graph G = (V, E, H) with $E = \{e_1, e_2, ..., e_n\}$, and a score ω_i defined for every edge edge $e_i \in E$.

We can obtain a solution to the MWT problem by solving the following ILP:

Now we discuss an extension of this ILP formulation. [Remember: one advantage of ILPs is that problem variants/modifications can often be expressed quite easily.]

Block partition

Given a set of sequences $A = \{a^1, a^2, \dots, a'\}$. The complete alignment graph is usually too big to be useful.

Often, we are given a set of *block matches* between pairs of the sequences a^p and a^q , where a match relates a substring of a^p and a substring of a^q via a run of *non-crossing* edges (called a *block*), as shown here for two blocks *D* and *D*':

$$A \rightarrow U \rightarrow G \rightarrow C \rightarrow U \rightarrow G \rightarrow C$$
$$|D'|$$
$$G \rightarrow U \rightarrow C \rightarrow U \rightarrow G \rightarrow U \rightarrow C$$
$$|D \rightarrow C \rightarrow U \rightarrow C$$
$$|C \rightarrow U \rightarrow G \rightarrow A \rightarrow U \rightarrow G \rightarrow A$$

In the following, we will assume that the edges of the alignment graph G = (V, E) were obtained from a set of matches, and we are given a partition of *E* into blocks. [Note that overlapping matches lead to a *multigraph*. Fortunately, this does not cause problems in our formulation.]

Generalized maximum trace problem (2)

Given a partition \mathcal{D} of the edges of G = (V, E) obtained from a set of matches. Then we require that for any given block $D \in \mathcal{D}$, either all edges in D are realized, or none. Each block D is assigned a positive weight $\omega(D)$.

Problem. Given an extended alignment graph G = (V, E, H) and a partition \mathcal{D} of E into blocks with weights $\omega(D)$ for all $D \in \mathcal{D}$. The *generalized maximum trace problem (GMT)* is to determine a set $M \subseteq \mathcal{D}$ of maximum total weight such that the edges in $\bigcup D$ do not induce a mixed cycle on G.

D∈M

Instead of having a variable for every edge in an extended alignment graph, we now have a variable for every set of the partition \mathcal{D} .

Otherwise the ILP remains the same.

ILP for the GMT

We define a surjective function $v : E \to D$, which maps each edge $e \in E$ to the block $d \in D$ in which *e* is contained and define

$$v(X) = \bigcup_{e \in X} v(e)$$
 for $X \subseteq E$.

It is now easy to formulate GMT as an integer linear program. For every $d \in \mathcal{D}$ we have a binary variable $x_d \in \{0, 1\}$ indicating whether *d* is in the solution or not. Then the GMT-problem can be written as:

$$\begin{array}{ll} \max & \sum_{d \in \mathcal{D}} \omega_d \cdot x_d \\ \text{s.t.} & \sum_{d \in v(C \cap E)} x_d \leq |v(C \cap E)| - 1 & \forall \text{ critical mixed cycles } C \text{ in } G \\ & x_d \in \{0, 1\} & \forall d \in \mathcal{D} \end{array}$$