
Discrete Mathematics for Bioinformatics WS 07/08, G. W. Klau, 14. November 2007, 10:53 1

Alignments using Combinatorial Optimization

Sources for the following lectures:

• Althaus, E., Caprara, A., Lenhof, H.-P., Reinert, K.: Multiple Sequence alignment with arbitrary gap costs:Computing
an optimal solution using polyhedral combinatorics. Proceedings of the 1st European Conference on Computational
Biology (ECCB 2002), pages 4-16, 2002

• Althaus, E., Caprara, A., Lenhof, H.-P., Reinert, K.: A Branch-and-Cut Algorithm for Multiple Sequence alignment:
Mathematical Programming 2005

• J. D. Kececioglu, H.-P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, M. Vingron: A Polyhedral Approach to Sequence
Alignment Problems. Discrete Applied Mathematics, volume 104, pages 143-186, 2000.

Motivation

Multiple alignment and structural multiple alignment are hard combinatorial problems. If one wants to solve them
exactly, the usual way is to use dynamic programming combined with clever bounding techniques.

Nevertheless, dynamic programming has clear limitations. If one considers for example the generalization of the
pairwise dynamic programming algorithm for multiple alignment, we have to consider O(2k ) choices in each step
of the algorithm, and we have to store intermediate results. This is clearly only feasible for k ≈ 10 sequences.

Similar statements hold for structural alignments.

Motivation (2)

Why bother? Why do we want to compute exact solutions to these problems? Are heuristics not sufficient,
especially considering that all scoring schemes only approximate the biological truth?

The answer is twofold:

1. In order to know how well a scoring scheme models the biological truth, we need exact results to compare
them to experimentally derived findings. For example we can use the database BaliBase, which is based
on the alignment of structural protein units to evaluate the performance of a given scoring scheme.

2. If we know that a scoring scheme approximates the problem at hand very well, then it might be worthwile
to compute exact solutions if the problem size allows.

Motivation (3)

In the following lectures we introduce a set of different techniques to solve these problems to optimality. These
techniques are based on the formulation of the problems as ILPs (Integer Linear Programs). This has two
advantages:

1. The problems are modified quite easily by adding new variables or contraints.

2. Solving (integer) linear problems is a field where a lot of research has been done, and there are very
efficient techniques known to solve ILPs.

Motivation (4)

In the following lectures we will discuss:



Combinatorial Optimization, Knut Reinert, Gunnar W. Klau, 14. November 2007, 10:53 2

• How to model (structural) multiple alignment problems as graph problems, which in turn are easy to
translate into ILPs.

• Approaches to solve the ILPs (e.g., the branch-and-cut approach).

• The most important points one has to address in solving a problem with branch-and-cut:

– identifying classes of facet-defining inequalities

– how to solve the associated separation problems

Linear programming

We first give a short overview of linear programming and how to solve (integer) linear programs using software
packages.

A linear program (LP) consists of a set of linear inequalities,

a11x1 + a12x2 + ...a1nxn ≤ b1

a21x1 + a22x2 + ...a2nxn ≤ b2

...
am1x1 + am2x2 + ...amnxn ≤ bm,

together with an objective function
c1x1 + c2x2 + · · ·+ cnxn

to be optimized, i.e., minimized or maximized.

Linear programming (2)

Linear programs can be efficiently solved using the simplex method, developed by George Dantzig in 1947, or
using interior point methods introduced by Khachiyan in 1979. The simplex algorithm has an exponential worst
case complexity but runs quite quickly in practice.

Interior point methods were first only a proof that linear programming can be solved in polynomial time. The
original algorithms were not practical. Meanwhile most LP solvers have both methods as practical routines.

Linear programming (3)

There exist powerful computer programs for solving LPs, even when huge numbers of variables and inequalities
are involved.

CPLEX is the most well known and powerful commercial LP solver. SoPlex is part of the ZIB Optimization Suite
(http://zibopt.zib.de), which is free for academic purposes.

For the rest of the lecture we will consider a LP solver as a black box which can solve linear programs very
efficiently and numerically relatively stable.

Linear programming (4)

We give a small example of a LP. The inequalities of an LP describe a convex polyhedron, which is called a
polytope, if it is bounded.

For example, the inequalities

−1x1−1x2 ≤ 5
−2x1 + 1x2 ≤ −1
1x1 + 3x2 ≤ 18

1x1 + 0x2 ≤ 6
1x1−2x2 ≤ 2



Combinatorial Optimization, Knut Reinert, Gunnar W. Klau, 14. November 2007, 10:53 3

describe the hyperplanes and polytope depicted in this cartoon:

For example, the objective function 2x1−3x2 takes on a maximum of 6, for x1 = 6 and x2 = 2, and a minimum of
−9, for x1 = 3 and x2 = 5.

Linear programming (5)

If we are after integral solutions, we were lucky with our example. The solution of the linear program is integer.
However, if we change some contraints, we are not so lucky. Assume we enter the following LP into our solver
(shown in CPLEX LP format):

maximize 2x1-3x2
subject to
-1x1 - 1x2 <= 5
-2x1 + 1.5x2 <= -1
1x1 + 3x2 <= 18

0.8x1 + 0x2 <= 6
1x1 - 2x2 <= 2

end

Then the optimal solution is fractional, namely x1 = 7.5 and x2 = 2.75. However, we often want to constrain the
variables to be integer, that means we want to solve an ILP.

Integer linear program

An integer linear program (ILP) is a linear program with the additional constraint that the variables xi are only
allowed to take on integer values.

Solving ILPs has been shown to be NP-hard. (See the book by Garey and Johnson 1979, for this and many other

NP-completeness results.)

There exist a number of different strategies for approximating or solving such an ILP. These strategies usually
first attempt to solve relaxations of the original problem, which are obtained by dropping some of the inequalities.

A very common relaxation is the LP-relaxation of the ILP, which is the LP obtained by dropping the integer
condition.

Integer linear program (2)

In the above example we can ask CPLEX to solve an ILP by specifying

general
x1
x2

Now the optimal solution is x1 = 6 and x2 = 2.



Combinatorial Optimization, Knut Reinert, Gunnar W. Klau, 14. November 2007, 10:53 4

Among the integer linear programs we have a special class, namely the combinatorial optimization problems. In
those we restrict the variables to be binary. If we take an “object” into the solution then the associated variable
is 1 otherwise it is 0.

Let’s illustrate this on an example. Assume we are given a drawing of a bipartite graph and we want to find the
largest subgraph such that no edge crosses or touches another edge in the drawing.

Integer linear program (3)

max x1 + x2 + x3

x1 + x2 ≤ 1

x1 + x3 ≤ 1

x2 + x3 ≤ 1x1

x2

x3

Obviously we can only choose one of the three edges. However, solving the LP on the right gives us a solution
of x1 = x2 = x3 = 1

2 , which satisfies the contraints and maximizes the objective function. If we require the solution
to be integer, only one of the three variables is set to 1.

Integer linear program (4)

In CPLEX we can do this by specifying

binary
x1
x2
x3

We now discuss how to model multiple sequence alignment problems as combinatorial optimization problems by
first formulating them as a graph problem and then do the obvious 1-to-1 mapping between edges and variables.

The alignment graph

Given two sequences a1 = A G C T and a2 = A G T .

The complete alignment graph is the following bipartite graph G = (V ,E), with node set V and edge set E :

A G C T

TGA
Each edge e = (u,v ) has a weight ω(e) = s(u,v ), the score for placing v under u.

An alignment graph is any subgraph of the complete alignment graph.

The trace of an alignment



Combinatorial Optimization, Knut Reinert, Gunnar W. Klau, 14. November 2007, 10:53 5

Given an alignment such as
A G C T
A G - T

, we say that an edge in the alignment graph is realized, if the

corresponding positions are aligned:

A G C T

TGA
The set of realized edges is called the trace of the alignment. An arbitrary subset T ⊆ E of edges is called a
trace, if there exists some alignment that it realizes.

Similarly, we define the (complete) alignment graph and trace for multiple alignments. For r sequences, the
resulting graph will be r -partite.

Maximum-weight trace problem

Problem. Given sequences A and a corresponding alignment graph G = (V ,E) with edge weights ω. The
maximum-weight trace problem is to find a trace T ⊆ E of maximum weight.

Note, that for two sequences, this can be solved in polynomial time by dynamic programming.

Characterization of traces

We have seen that an alignment can be described by a trace in the complete alignment graph G = (V ,E).

Question: Is every subset T ⊆ E the trace of some alignment?

Clearly, the answer is no:

A G C T

TGA
Goal: Characterize all legal traces.

Characterization of traces (2)

Here are two examples:



Combinatorial Optimization, Knut Reinert, Gunnar W. Klau, 14. November 2007, 10:53 6

trace alignment

(a)

A G C T

TA C

TGA −→

A G C T

A

GA T

T

−

− C

ok

(b)

A G C T

TA C

TGA −→

A

A

A G

C

−

−

T

T

G C

−

T − −

?

not ok.

Partial orders

A binary relation ≤ is a (non-strict) partial order, if it is

1. reflexive, i.e., a ≤ a,

2. antisymmetric, i.e., a ≤ b and b ≤ a implies a = b, and

3. transitive, i.e., a ≤ b and b ≤ c implies a ≤ c.

A binary relation < is a strict partial order, if it is

1. irreflexive, i.e., a 6< a, and

2. transitive, i.e., a < b and b < c implies a < c.

Given a binary relation ≺, the transitive closure of ≺ is a binary relation ≺∗ such that x ≺∗ x ′ if there exists a
sequence of elements x = x1,x2, ... ,xk = x ′ with x1 ≺ x2 ≺ ...xk .

The extended alignment graph

We define a binary relation ≺ on the characters of the sequences A = {ai
j} by writing ai

j ≺ ai
j ′ , if j ′ = j + 1, and

indicate the pairs (ai
j ,a

i
j+1) by a set H of directed edges in the alignment graph. This results in the extended

alignment graph G = (V ,E ,H).

A G C T

TC

TGA

A

Let≺∗ denote the transitive closure of ≺, i.e., we write ai
j ≺∗ ai

j ′ , if j ′ > j . Observe that≺∗ is a strict partial order.



Combinatorial Optimization, Knut Reinert, Gunnar W. Klau, 14. November 2007, 10:53 7

The extended alignment graph (2)

Consider two sets of nodes X ⊆ V and Y ⊆ V . We define

X /Y ,

if and only if
∃ x ∈ X ∃ y ∈ Y : x ≺ y .

We define /∗ to be the transitive closure of /, that is, we write X /∗Y , if for one of the sequences ap ∈ A we have
that X contains a node representing a position ap

j in ap and Y contains a node representing another position ap
k

in ap, with j < k .

In other words, we write
X /∗ Y ,

if and only if
∃ x ∈ X ∃ y ∈ Y : x ≺∗ y .

The extended alignment graph (3)

Consider the two examples again and define sets X1,X2, ... via the two given traces:

A G

G

1X
X2

X3
X4A G C T

TA C

TGA

A G

G

1X
X2 X4

X3
A G C T

TA C

TGA

(a) (b)

In (a), X1 /∗ X2 /∗ X3 /∗ X4, and /∗ is a strict partial order.

In (b), we have X1 /∗ X2,X3,X4; X2 /∗ X3,X4; and X3 /∗ X2,X4. Since, e.g., X2 /∗ X2 does not hold, there is no
transitivity, and thus the binary relation no partial order.

Characterization of traces

Theorem . (John Kececioglu)
Given a set of sequences A. Let G = (V ,E ,H) be an extended alignment graph for A. A subset T ⊆ E of edges
is a trace, if and only if /∗ is a strict partial order on the connected components of G′ = (V ,T ).

(Recall that a connected component of a graph is a maximal set of nodes U ⊆ V such that any two nodes
v ,u ∈ U are connected by a path of edges in the graph.)

Proof. Blackboard.


