Combinatorial Optimization and Integer Linear Programming

Combinatorial Optimization: Introduction

Many problems arising in practical applications have a special, discrete and finite, nature:
Definition. (Linear Combinatorial Optimization Problem)
Given

- a finite set E (the ground set),
- a subset $\mathcal{F} \subseteq 2^{E}$ (the set of feasible solutions),
- a cost function $c: E \rightarrow \mathbb{R}$,
find a set $F^{*} \in \mathcal{F}$ such that

$$
c\left(F^{*}\right):=\sum_{e \in F^{*}} c(e)
$$

is maximal or minimal.
Examples: Shortest Path, Traveling Salesman, and many many more.
Just in bioinformatics: Alignments, Threading, Clone-Probe Mapping, Probe Selection, De Novo Peptide Sequencing, SideChain Placement, Maximum-weight Connected Subgraph in PPI Networks, Genome Rearrangements, Cluster Editing, Finding Regulatory Modules, Finding Approximate Gene Clusters, and many more...

Combinatorial Optimization: Introduction

Example. Optimal Microarray Probe Selection
Experimental setup (group testing):

- Goal: determine presence of targets in sample
- probes hybridize with targets \rightarrow hybridization pattern

generate candidate probes	select probes for design	run experiment	decode hybridization pattern

Selection phase:

- unique probes are easy to decode but difficult to find (similarities, errors, add. constraints, ...)
- \rightarrow consider non-unique probes
- Task: choose few probes that still allow to infer which targets are in the sample

Combinatorial Optimization: Introduction
(3)

Example hybridization matrix $(H)_{i j}$:

	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	p_{7}	p_{8}	p_{9}
t_{1}	1	1	1	0	1	1	0	0	0
t_{2}	1	0	1	1	0	0	1	1	0
t_{3}	0	1	1	1	0	1	1	0	1
t_{4}	0	1	0	0	1	0	1	1	1

Assume: no errors, only one target present in sample

Combinatorial Optimization: Introduction

Example hybridization matrix $(H)_{i j}$:

	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	p_{7}	p_{8}	p_{9}
t_{1}	1	1	1	0	1	1	0	0	0
t_{2}	1	0	1	1	0	0	1	1	0
t_{3}	0	1	1	1	0	1	1	0	1
t_{4}	0	1	0	0	1	0	1	1	1

Assume: no errors, only one target present in sample
Combinatorial Optimization: Introduction (5)

Example hybridization matrix $(H)_{i j}$:

Assume: no errors, two targets present, e.g., t_{2} and t_{3}

Combinatorial Optimization: Introduction

Example hybridization matrix $(H)_{i j}$:

Assume: no errors, two targets present, e.g., t_{2} and t_{3}

Combinatorial Optimization: Introduction

We want to solve the following problem.

Definition. Probe Selection Problem (PSP)

- Given an incidence matrix $H, d \in \mathbb{N}$, and $c \in \mathbb{N}$,
- find the smallest subset $D \subseteq N$, such that
- all targets are covered by at least d probes
- all different subsets of targets S and T up to cardinality c are d-separable with respect to D

Observation. PSP is a combinatorial optimization problem, because

- ground set $=$ candidate probes, i.e., $E:=\{1,2, \ldots, n\}$.
- feasible solutions = feasible designs, i.e.,

$$
\mathcal{F}:=\left\{D \in 2^{E} \mid D \text { satisfies coverage and separation constraints }\right\}
$$

- all costs $c(e):=1$.

Combinatorial Optimization: Introduction

More examples. What about

$$
\min \left\{3 x^{2}+2 \mid x \in \mathbb{R}\right\} ?
$$

Or

$$
\begin{aligned}
\max & 2 x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 3 \\
& 3 x_{1}-x_{2} \leq 5 \\
& x_{1}, x_{2} \in \mathbb{N} ?
\end{aligned}
$$

Interesting combinatorial problems have an exponential number of feasible solutions. [Otherwise, a straightforward polynomial-time algorithm finds optimal solutions.]

Combinatorial optimization: find solutions faster than by complete enumeration.

Combinatorial Optimization

(9)

Now, given a combinatorial optimization problem $C=(E, \mathcal{F}, c)$, we define, for each feasible solution $F \in \mathcal{F}$, its characteristic vector $\chi^{F} \in\{0,1\}^{E}$ as

$$
\chi_{e}^{F}:= \begin{cases}1 & e \in F \\ 0 & \text { otherwise } .\end{cases}
$$

Then, assuming the objective is to maximize, C can be seen as maximizing over a polytope, i. e.,

$$
\max \left\{c^{T} x \mid x \in \operatorname{conv}\left\{\chi^{F} \in\{0,1\}^{E} \mid F \in \mathcal{F}\right\}\right.
$$

Why polytope?
Theorem. (Minkowski 1896, Weyl 1935)
Each polytope $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b, I \leq x \leq u\right\}$ can be written as

$$
P=\operatorname{conv}(V)
$$

where V is a finite subset of \mathbb{R}^{n} and vice versa.

Combinatorial Optimization

 (10)It is possible to switch between these descriptions as \mathcal{H}-polytope (halfspaces) and \mathcal{V}-polytope (vertices) with the Fourier-Motzkin elimination method.

Example.

Consider the \mathcal{V}-polytope defined by

$$
P=\operatorname{conv}\left\{\binom{0}{1},\binom{1}{0},\binom{1}{1}\right\}
$$

End (Example).
So, we can just compute the \mathcal{H}-polytope $\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ for C and optimize over it using, e.g., the Simplex method?

Unfortunately, it is not so easy:

- In general, we cannot find A and b in polynomial time.
- The size of A and b might be exponential.
- The coefficients in A and b can be exponentially large.

Combinatorial Optimization

(11)

A little bit of light. . . often, finding an integer linear programming (ILP) formulation is easier:

$$
\max \left\{c^{\prime T} x^{\prime} \mid A^{\prime} x^{\prime} \leq b, x^{\prime} \in \mathbb{Z}\right\}
$$

But: solving LPs is easy, solving ILPs is not!

