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Combinatorial Optimization and Integer
Linear Programming

Combinatorial Optimization: Introduction

Many problems arising in practical applications have a special, discrete and finite, nature:

Definition. (Linear Combinatorial Optimization Problem)
Given

• a finite set E (the ground set),
• a subset F ⊆ 2E (the set of feasible solutions),
• a cost function c : E → R,

find a set F ∗ ∈ F such that
c(F ∗) := ∑

e∈F ∗
c(e)

is maximal or minimal.

Examples: Shortest Path, Traveling Salesman, and many many more. . .

Just in bioinformatics: Alignments, Threading, Clone-Probe Mapping, Probe Selection, De Novo Peptide Sequencing, Side-

Chain Placement, Maximum-weight Connected Subgraph in PPI Networks, Genome Rearrangements, Cluster Editing,

Finding Regulatory Modules, Finding Approximate Gene Clusters, and many more. . .
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Example. Optimal Microarray Probe Selection

Experimental setup (group testing):

• Goal: determine presence of targets in sample
• probes hybridize with targets → hybridization pattern

generate
candidate
probes

select probes
for design

run
experiment

decode
hybridization
pattern

Selection phase:

• unique probes are easy to decode but difficult to find (similarities, errors, add. constraints, . . . )
• → consider non-unique probes
• Task: choose few probes that still allow to infer which targets are in the sample
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Example hybridization matrix (H)ij :
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Assume: no errors, only one target present in sample
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Example hybridization matrix (H)ij :
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Example hybridization matrix (H)ij :
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Assume: no errors, two targets present, e.g., t2 and t3
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Example hybridization matrix (H)ij :
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Assume: no errors, two targets present, e.g., t2 and t3
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We want to solve the following problem.

Definition. Probe Selection Problem (PSP)

• Given an incidence matrix H, d ∈ N, and c ∈ N,
• find the smallest subset D ⊆ N, such that

– all targets are covered by at least d probes
– all different subsets of targets S and T up to cardinality c are d-separable with respect to D

Observation. PSP is a combinatorial optimization problem, because

• ground set = candidate probes, i.e., E := {1,2, ... ,n}.
• feasible solutions = feasible designs, i.e.,

F := {D ∈ 2E | D satisfies coverage and separation constraints}

• all costs c(e) := 1.
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More examples. What about
min{3x2 + 2 | x ∈ R} ?

Or

max 2x1 + 3x2

s.t. x1 + 2x2 ≤ 3

3x1− x2 ≤ 5

x1,x2 ∈ N ?

Interesting combinatorial problems have an exponential number of feasible solutions. [Otherwise, a straightforward

polynomial-time algorithm finds optimal solutions.]

Combinatorial optimization: find solutions faster than by complete enumeration.
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Now, given a combinatorial optimization problem C = (E ,F ,c), we define, for each feasible solution F ∈ F , its
characteristic vector χF ∈ {0,1}E as

χF
e :=

{
1 e ∈ F

0 otherwise .
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Then, assuming the objective is to maximize, C can be seen as maximizing over a polytope, i. e.,

max{cT x | x ∈ conv
{

χF ∈ {0,1}E | F ∈ F
}

.

Why polytope?

Theorem. (Minkowski 1896, Weyl 1935)
Each polytope P = {x ∈ Rn | Ax ≤ b, l ≤ x ≤ u} can be written as

P = conv(V )

where V is a finite subset of Rn and vice versa.
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It is possible to switch between these descriptions as H -polytope (halfspaces) and V -polytope (vertices) with
the Fourier-Motzkin elimination method.

Example.

Consider the V -polytope defined by

P = conv

{(
0
1

)
,

(
1
0

)
,

(
1
1

)}
End (Example).

So, we can just compute the H -polytope {x ∈ Rn | Ax ≤ b} for C and optimize over it using, e. g., the Simplex
method?

Unfortunately, it is not so easy:

• In general, we cannot find A and b in polynomial time.
• The size of A and b might be exponential.
• The coefficients in A and b can be exponentially large.
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A little bit of light. . . often, finding an integer linear programming (ILP) formulation is easier:

max{c′T x ′ | A′x ′ ≤ b,x ′ ∈ Z} .

But: solving LPs is easy, solving ILPs is not!


