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Solving the MWT

Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

max WX
ei%E
subject to z xi <|CNE|—1 for all critical mixed cycles C
e cCNE
x; € {0,1} foralli=1,...,n

We showed before that this ILP describes the solution to the Maximum Weight Trace problem. The first step is
to have a closer look at the MWT-polytope.

Solving the MWT ¢,

Let 7 :={T CE | T isatrace} be the set of all feasible solutions. We define the MWT polytope as the convex
hull of all incidence vectors of E that are feasible, i. e.,

P (G) :=conv{X" € {0,1}El|T e T} ,

where the incidence vector X" for a subset T C E is defined by setting X! =1 ife € E and setting X =0ife ¢ E.

We have a closer look at the facial structure of the polytope, that means we try to identify facet-defining classes
of inequalities. The following theorem is our main tool.

Identifying facet-defining classes of polytope

Theorem. Let P C QY be a full dimensional polyhedron. If F is a (nonempty) face of P then the following
assertions are equivalent.

1. Fis afacetof P.
2. dim(F) =dim(P) — 1, where dim(P) is the maximum number of affinely independent points in P minus one.
3. There exists a valid inequality ¢ x < ¢ with respect to P with the following three properties:

(@ F={x€P|c™x=co}
(b) There exists a vector X € P such that c"% < c.

(c) Ifa"x < ag is a valid inequality for P such that F C F = {x€P| alx= ap } then there exists a number
A€ Qsuchthata =A-cT andag = A - co.

Identifying facet-defining classes of polytope @

Assertions 2 and 3 provide the two basic methods to prove that a given inequality ¢'x < ¢ is facet-defining for
a polyhedron P.

The first method (Assertion 2), called the direct method, consists of exhibiting a set of d = dim(P) vectors Xy, ..., Xq
satisfying ¢ x; = ¢y and showing that these vectors are affinely independent.

The indirect method (Assertion 3) is the following: We assume that
{x|c"™x=co} C{x|a"x=ap}

for some valid inequality a”x < ag and prove that there exists a A > 0 such thata” =A-cT and ag = A - co.
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Clique inequalities

Now we describe a class of valid, facet-defining inequalities for the MWT problem, focusing first on the pairwise
case. In the case of two sequences, consider the following extended alignment graph:

X1 L3

This gives rise to the following set of inequalities:
Xp+X2 <1, Xp+x3 <1, Xp+x3 <1

However, it is clear that only one of the three edges can be realized by an alignment. Hence, inequality x; +Xx, +
x3 < 1is valid and more stringent. Indeed it cuts off the fractional solution x; =X, = X3 = %
Clique inequalities o

If C C E is a set of alignment edges such that each pair forms a mixed cycle, it is called a clique (since it forms
a clique in the conflict graph).

The conflict graph of a combinatorial optimization problem has a node for each object and an edge between
pairs of conflicting objects). In general the clique inequalities

Xe <1
e;:ef

are valid for the MWT problem.
Are they also facet-defining for the MWT polytope?

Theorem.

Let C C E be a maximal clique. Then the inequality z Xe < 1 is facet-defining for P+ (G).
ecC

Cligue inequalities

Proof.

We choose the direct way, which means we have to find n affinely independent vectors satisfying Z Xe = 1. This
ecC
can be easily achieved. Assume without loss of generality that |E \ C| # &. We first construct |C| many solutions

by choosing a single edge in C.

Then for each edge e ¢ C there must be an edge f € C which does not form a mixed cycle with e (otherwise C
is not maximal). Hence we can construct as set of solutions {e,f}, Ve ¢ C. This means we have for all n edges
a solution satisfying the clique inequality with equality, and they are clearly affinely independent.

Clique inequalities  «

But how do we efficiently find violated clique inequalities? How do we solve the separation problem? We define
the following relation on edges:
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Definition.
Let K, ¢ be the complete bipartite graph with nodes xg, ..., X, and y1, ..., yq. Define the strict partial order ‘<’ on
the edges of K, 4 as follows:
e =(xi,y)) <f=(xy) iff
(i>kandj<lDor(i=kandj <I).

Observe that for two sequences the alignment graph (V,E) is a subgraph of K, 4 and that two edges e and f
form a mixed cycle in the input graph iff eithere < f orf <e.

Cligue inequalities

Definition.

Let PG(Kp q) be the p x q directed grid graph with arcs going from right to left and from bottom to top. Row r,
1 <r <pof PG(K; ) contains g nodes which correspond from left to right to the g edges that go between node
Xp—r+1 and node yi,...,yq in Kp q. We call PG(K; ) the pairgraph of K, 4 and we call a node of the pairgraph
essential if it corresponds to an edge in E.
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1 9

Cligue inequalities

6
3

The graph PG(K; ) has exactly one source and one sink and there is a path from node n, to node ny in PG(K 4)
iff e, < ey for the corresponding edges ey, e; in Ky 4.

Lemma.

Let P = ny,...,Nnp+q be a source-to-sink path in PG(K, 4) and let ey,...,e, | < p+q, be the edges in E that
correspond to essential nodes in P. Then ey,..., € is a clique of the input extended alignment graph if | > 2.
Moreover, every maximal clique in the input extended alignment graph can be obtained in this way.

Cligue inequalities o

Proof.

For any two nodes n; and n; in PG(K, 4) with i > j the corresponding edges e; and g; are in relation e; < €; and
hence form a mixed cycle in G. Thus {es, ..., e} is a clique of G. Conversely, the set of edges in any clique C of
G is linearly ordered by < and hence all maximal cliques are induced by source-to-sink paths in PG(Kp q).

Cligue inequalities ¢

We can now very easily use the pairgraphs for each pair of sequences to separate the clique inequalities.

Assume the solution X of the current LP-relaxation is fractional. Our problem is to find a clique C which violates
the clique inequality
Xe <1.
ecCNE
Assign the cost X, to each essential node ve in PG(K, ) (essential nodes are the nodes that correspond to the
edges in E) and 0 to non-essential nodes.
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Cligue inequalities

Then compute the longest source-to-sink path C in PG(Kp 4). If the cost of C is greater than 1, i.e.,

Xe > 1
ecCNE
we have found a violated clique inequality.

Since PG(K; q) is acyclic, such a path can be found in polynomial time.

[Caution: We will not go deeper into this, but it is necessary to make a sparse version of the PG in the case of a non-
complete bipartite graph. This has to be done such that its size ist still polynomial and each path encodes a maximal
cligue. Nevertheless, the trick with essential and non-essential nodes will work and leads to correct separation results.]

Mixed cycle inequalities o

Now we describe how to solve the separation problem for the mixed-cycle inequalities. Assume the solution x of
the linear program is fractional.

First assign the cost 1 — x. to each edge e € E and 0 to all a € H. Then we compute for each node s;;,
1 <i <k, 1<j < n;the shortest path from s; j+1 to s;;. If there is such a shortest path P, and its cost is less
than 1, i.e.,

> A-%)<1,
ecP
we have found a violated inequality, namely
2@>M—L
ecP

since P together with the arc (s;j,s; j+1) forms a mixed cycle.



