
Metaheuristics and Local Search
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Discrete optimization problems

• Variables x1, ... , xn.

• Variable domains D1, ... , Dn, with Dj ⊆ Z.

• Constraints C1, ... , Cm, with Ci ⊆ D1 × · · · × Dn.

• Objective function f : D1 × · · · × Dn → R, to be minimized.
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Solution approaches

• Complete (exact) algorithms systematic search

. Integer linear programming

. Finite domain constraint programming

• Approximate algorithms

. Heuristic approaches heuristic search

∗ Constructive methods: construct solutions from partial solutions

∗ Local search: improve solutions through neighborhood search

∗ Metaheuristics: Combine basic heuristics in higher-level frameworks

. Polynomial-time approximation algorithms for NP-hard problems
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Metaheuristics

• Heuriskein (ευρισκειν): to find

• Meta: beyond, in an upper level

• Survey paper: C. Blum, A. Roli: Metaheuristics in Combinatorial Optimization,
ACM Computing Surveys, Vol. 35, 2003.
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Characteristics

• Metaheuristics are strategies that “guide” the search process.

• The goal is to efficiently explore the search space in order to find (near-) optimal
solutions.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• They may incorporate mechanisms to avoid getting trapped in confined areas
of the search space.
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Characteristics (2)

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the form of
heuristics that are controlled by the upper level strategy.

• Today more advanced metaheuristics use search experience (embodied in
some form of memory) to guide the search.
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Classification of metaheuristics

• Single point search (trajectory methods) vs. population-based search

• Nature-inspired vs. non-nature inspired

• Dynamic vs. static objective function

• One vs. various neighborhood structures

• Memory usage vs. memory-less methods
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I. Trajectory methods

• Basic local search: iterative improvement

• Simulated annealing

• Tabu search

• Explorative search methods

. Greedy Randomized Adaptive Search Procedure (GRASP)

. Variable Neighborhood Search (VNS)

. Guided Local Search (GLS)

. Iterated Local Search (ILS)
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Local search

• Find an initial solution s

• Define a neighborhood N (s)

• Explore the neighborhood

• Proceed with selected neighbor
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Simple descent

procedure SimpleDescent(solution s)
repeat

choose s′ ∈ N (s)
if f (s′) < f (s) then

s ← s′

end if

until f (s′) ≥ f (s), ∀s′ ∈ N (s)
end
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Local and global minima
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Deepest descent

procedure DeepestDescent(solution s)
repeat

choose s′ ∈ N (s) with f (s′) ≤ f (s′′), ∀s′′ ∈ N (s)
if f (s′) < f (s) then

s ← s′

end if

until f (s′) ≥ f (s), ∀s′ ∈ N (s)
end

Problem: Local minima
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Multistart and deepest descent

procedure Multistart
iter ← 1
f (Best)←∞
repeat

choose a starting solution s0 at random
s ← DeepestDescent(s0)
if f (s) < f (Best) then

Best ← s
end if

iter ← iter + 1
until iter = IterMax

end
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Simulated annealing

Kirkpatrick 83

• Anneal: to heat and then slowly cool (esp. glass or metal) to reach minimal
energy state

• Like standard local search, but sometimes accept worse solution.

• Select random solution from the neighborhood and accept it with probability 
Boltzmann distribution

p =
{

1, if f (new) < f (old),
exp(−(f (new)− f (old))/T ), else.

• Start with high temperature T , and gradually lower it cooling schedule
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Acceptance probability
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Algorithm

s ← GenerateInitialSolution()
T ← T0
while termination conditions not met do
s′ ← PickAtRandom(N (s))
if (f (s′) < f (s)) then

s ← s′

else
Accept s′ as new solution with probability p(T , s′, s)

endif
Update(T )

endwhile
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Tabu search

Glover 86

• Local search with short term memory, to escape local minima and to avoid
cycles.

• Tabu list: Keep track of the last r moves, and don’t allow going back to these.

• Allowed set: Solutions that do not belong to the tabu list.

• Select solution from allowed set, add to tabu list, and update tabu list.
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Basic algorithm

s ← GenerateInitialSolution()
TabuList ← ∅
while termination conditions not met do
s ← ChooseBestOf(N (s) \ TabuList)
Update(TabuList)

endwhile
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Choices in tabu search

• Neighborhood

• Size of tabu list tabu tenure

• Kind of tabu to use (complete solutions vs. attributes)
 tabu conditions

• Aspiration criteria

• Termination condition

• Long-term memory: recency, frequency, quality, influence
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Refined algorithm

s ← GenerateInitialSolution()
Initialize TabuLists (TL1, ..., TLr )
k ← 0
while termination conditions not met do
AllowedSet(s, k )← {s′ ∈ N (s) |

s does not violate a tabu condition
or satisfies at least one aspiration condition }

s ← ChooseBestOf(AllowedSet(s, k ))
UpdateTabuListsAndAspirationConditions()
k ← k + 1

endwhile
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II. Population-based search

• Evolutionary computation

• Ant colony optimization
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Evolutionary computation

• Idea: Mimic evolution - obtain better solutions by combining current ones.

• Keep several current solutions, called population or generation.

• Create new generation:

. select a pool of promising solutions, based on a fitness function.

. create new solutions by combining solutions in the pool in various ways  
recombination, crossover.

. add random mutations.

• Variants: Evolutionary programming, evolutionary strategies, genetic algo-
rithms
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Algorithm

P ← GeneralInitialPopulation()
Evaluate(P)
while termination conditions not met do
P′ ← Recombine(P)
P′′ ← Mutate(P′)
Evaluate(P′′)
P ← Select(P′′ ∪ P)

endwhile
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Crossover and mutations

• Individuals (solutions) often coded as bit vectors

• Crossover operations provide new individuals, e.g.

101101 0110
000110 1011  

101101 1011
000110 0110

• Mutations often helpful, e.g., swap random bit.
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Further issues

• Individuals vs. solutions

• Evolution process: generational replacement vs. steady state, fixed vs. variable
population size

• Use of neighborhood structure to define recombination partners (structured vs.
unstructured populations)

• Two-parent vs. multi-parent crossover

• Infeasible individuals: reject/penalize/repair

• Intensification by local search

• Diversification by mutations
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Ant colony optimization

Dorigo 92

• Observation: Ants are able to find quickly the shortest path from their nest to a
food source how ?

• Each ant leaves a pheromone trail.

• When presented with a path choice, they are more likely to choose the trail with
higher pheromone concentration.

• The shortest path gets high concentrations because ants choosing it can return
more often.
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Ant colony optimization (2)

• Ants are simulated by individual (ant) agents swarm intelligence

• Each decision variable has an associated artificial pheromone level.

• By dispatching a number of ants, the pheromone levels are adjusted according
to how useful they are.

• Pheromone levels may also evaporate to discourage suboptimal solutions.
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Construction graph

• Complete graph G = (C, L)

. C solution components

. L connections

• Pheromone trail values τi , for ci ∈ C.

• Heuristic values ηi

• Moves in the graph depend on transition probabilities

p(cr | sa[cl ]) =


[ηr ]α[τr ]β∑

cu∈J(sa[cl ])
[ηu]α[τu]β if cr ∈ J(sa[cl ])

0 otherwise
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Algorithm (ACO)

InitializePheromoneValues
while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions() % optional

endScheduleActivities
endwhile
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Pheromone Update

Set

τj = (1− ρ)τj +
∑
a∈A

∆τsa
j ,

where

∆τsa
j =

F (sa) if cj is component of sa

0 otherwise .
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Intensification and diversification

Glover and Laguna 1997

The main difference between intensification and diversification is that during an in-
tensification stage the search focuses on examining neighbors of elite solutions.
. . . The diversification stage on the other hand encourages the search process to
examine unvisited regions and to generate solutions that differ in various significant
ways from those seen before.
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Case study: Time tabling

Rossi-Doria et al. 2002 http://iridia.ulb.ac.be/~meta/newsite/downloads/

tt_comparison.pdf

• Set of events E , set of rooms R, set of students S, set of features F

• Each student attends a number of events and each room has a size.

• Assign all events a timeslot and a room so that the following hard constraints
are satisfied:

. no student attends more than one event at the same time.

. the room is big enough for all attending students and satisfies all features
required by the event.

. only one event is in each room at any timeslot.
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Case study: Time tabling (2)

• Penalties for soft constraint violations

. a student has a class in the last slot of a day.

. a student has more than two classes in a row.

. a student has a single class on a day.

• Objective: Minimize number of soft constraint violations in a feasible solution
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Common neighborhood structure

• Solution ordered list of length |E |
The i-th element indicates the timeslot to which event i is assigned.

• Room assignments generated by matching algorithm.

• Neighborhood: N = N1 ∪ N2

. N1 moves a single event to a different timeslot

. N2 swaps the timeslots of two events.
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Common local search procedure

Stochastic first improvement local search

• Go through the list of all the events in a random order.

• Try all the possible moves in the neighbourhood for every event involved in
constraint violations, until improvement is found.

• Solve hard constraint violations first.
If feasibility is reached, look at soft constraint violations as well.
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Metaheuristics

1. Evolutionary algorithm

2. Ant colony optimization

3. Iterated local search

4. Simulated annealing

5. Tabu search
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1. Evolutionary algorithm

• Steady-state evolution process: at each generation only one couple of parent
individuals is selected for reproduction.

• Tournament selection: choose randomly a number of individuals from the cur-
rent population and select the best ones in terms of fitness function as parents.

• Fitness function: Weighted sum of hard and soft constraint violations,

f (s) := #hcv (s) · C + #scv (s)
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1. Evolutionary algorithm (2)

• Uniform crossover: for each event a timeslot’s assignment is inherited from the
first or second parent with equal probability.

• Mutation: Random move in an extended neighbourhood (3-cycle permutation).

• Search parameters: Population size n = 10, tournament size = 5, crossover
rate α = 0.8, mutation rate β = 0.5

• Find a balance between the number of steps in local search and the number of
generations.
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2. Ant colony optimization

• At each iteration, each of m ants constructs, event by event, a complete assign-
ment of the events to the timeslots.

• To make an assignment, an ant takes the next event from a pre-ordered list,
and probabilistically chooses a timeslot, guided by two types of information:

1. heuristic information: evaluation of the constraint violations caused by mak-
ing the assignment, given the assignments already made,

2. pheromone information: estimate of the utility of making the assignment, as
judged by previous iterations of the algorithm.

• Matrix of pheromone values τ : E × T → R≥0.
Initialization to a parameter τ0, update by local and global rules.
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2. Ant colony optimization (2)

• An event-timeslot pair which has been part of good solutions will have a high
pheromone value, and consequently have a higher chance of being chosen
again.

• At the end of the iterative construction, an event-timeslot assignment is con-
verted into a candidate solution (timetable) using the matching algorithm.

• This candidate solution is further improved by the local search routine.

• After all m ants have generated their candidate solution, a global update on
the pheromone values is performed using the best solution found since the
beginning.
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3. Iterated local search

• Provide new starting solutions obtained from perturbations of a current solution

• Often leads to far better results than using random restart.

• Four subprocedures

1. GenerateInitialSolution: generates an initial solution s0

2. Perturbation: modifies the current solution s leading to some intermediate
solution s′,

3. LocalSearch: obtains an improved solution s′′,

4. AcceptanceCriterion: decides to which solution the next perturbation is ap-
plied.
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Perturbation

• Three types of moves

P1: choose a different timeslot for a randomly chosen event;

P2: swap the timeslots of two randomly chosen events;

P3: choose randomly between the two previous types of moves and a 3-
exchange move of timeslots of three randomly chosen events.

• Strategy

. Apply each of these different moves k times, where k is chosen of the set
{1; 5; 10; 25; 50; 100}.

. Take random choices according to a uniform distribution.
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Acceptance criteria

• Random walk: Always accept solution returned by local search

• Accept if better

• Simulated annealing

SA1: P1(s, s′) = e−
f (s)−f (s′)

T

SA2: P2(s, s′) = e
− f (s)−f (s′)

T ·f (sbest )

Best parameter setting (for medium instances):

P1, k = 5, SA1 with T = 0.1
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4. Simulated annealing

Two phases

1. Search for feasible solutions, i.e., satisfy all hard constraints.

2. Minimize soft constraint violations.
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Strategies

• Initial temperature: Sample the neighbourhood of a randomly generated so-
lution, compute average value of the variation in the evaluation function, and
multiply this value by a given factor.

• Cooling schedule

1. Geometric cooling: Tn+1 = α× Tn, 0 < α < 1

2. Temperature reheating: Increase temperature if rejection ratio (= number of
moves rejected/number of moves tested) exceeds a given limit.

• Temperature length: Proportional to the size of the neighborhood
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5. Tabu search

• Moves done by moving one event or by swapping two events.

• Tabu list: Forbid a move if at least one of the events involved has been moved
less than l steps before.

• Size of tabu list l : number of events divided by a suitable constant k (here
k = 100).

• Variable neighbourhood set: every move is a neighbour with probability 0.1 
decrease probability of generating cycles and reduce the size of neighbourhood
for faster exploration.

• Aspiration criterion: perform a tabu move if it improves the best known solution.
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Evaluation

http://iridia.ulb.ac.be/~msampels/ttmn.data/

• 5 small, 5 medium, 2 large instances

Type small medium large
|E | 100 400 400
|S| 80 200 400
|R| 5 10 10

• 500 resp. 50 resp. 20 independent trials per metaheuristic per instance.

• Diagrams show results of all trials on a single instance.

• Boxes show the range between 25% and 75% quantile.
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Evaluation (2)

• Small: All algorithms reach feasibility in every run,
ILS best, TS worst overall performance

• Medium: SA best, but does not achieve feasibility in some runs. ACO worst.

• Large01: Most metaheuristics do not even achieve feasibility. TS feasibility in
about 8% of the trials.

• Large02: ILS best, feasibility in about 97% of the trials, against 10% for ACO
and GA. SA never reaches feasibility. TS gives always feasible solutions, but
with worse results than ILS and AC0 in terms of soft constraints.
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