
Metaheuristics and Local Search

8000

Discrete optimization problems

• Variables x1, ... , xn.

• Variable domains D1, ... , Dn, with Dj ⊆ Z.

• Constraints C1, ... , Cm, with Ci ⊆ D1 × · · · × Dn.

• Objective function f : D1 × · · · × Dn → R, to be minimized.

8001

Solution approaches

• Complete (exact) algorithms systematic search

. Integer linear programming

. Finite domain constraint programming

• Approximate algorithms

. Heuristic approaches heuristic search

∗ Constructive methods: construct solutions from partial solutions

∗ Local search: improve solutions through neighborhood search

∗ Metaheuristics: Combine basic heuristics in higher-level frameworks

. Polynomial-time approximation algorithms for NP-hard problems

8002

Metaheuristics

• Heuriskein (ευρισκειν): to find

• Meta: beyond, in an upper level

• Survey paper: C. Blum, A. Roli: Metaheuristics in Combinatorial Optimization,
ACM Computing Surveys, Vol. 35, 2003.

8003

Characteristics

• Metaheuristics are strategies that “guide” the search process.

• The goal is to efficiently explore the search space in order to find (near-) optimal
solutions.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• They may incorporate mechanisms to avoid getting trapped in confined areas
of the search space.

8004

Characteristics (2)

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the form of
heuristics that are controlled by the upper level strategy.

• Today more advanced metaheuristics use search experience (embodied in
some form of memory) to guide the search.

8005

Classification of metaheuristics

• Single point search (trajectory methods) vs. population-based search

• Nature-inspired vs. non-nature inspired

• Dynamic vs. static objective function

• One vs. various neighborhood structures

• Memory usage vs. memory-less methods

8006

I. Trajectory methods

• Basic local search: iterative improvement

• Simulated annealing

• Tabu search

• Explorative search methods

. Greedy Randomized Adaptive Search Procedure (GRASP)

. Variable Neighborhood Search (VNS)

. Guided Local Search (GLS)

. Iterated Local Search (ILS)

8007

Local search

• Find an initial solution s

• Define a neighborhood N (s)

• Explore the neighborhood

• Proceed with selected neighbor

8008

Simple descent

procedure SimpleDescent(solution s)
repeat

choose s′ ∈ N (s)
if f (s′) < f (s) then

s ← s′

end if

until f (s′) ≥ f (s), ∀s′ ∈ N (s)
end

8009

Local and global minima

8010

Deepest descent

procedure DeepestDescent(solution s)
repeat

choose s′ ∈ N (s) with f (s′) ≤ f (s′′), ∀s′′ ∈ N (s)
if f (s′) < f (s) then

s ← s′

end if

until f (s′) ≥ f (s), ∀s′ ∈ N (s)
end

Problem: Local minima

8011

Multistart and deepest descent

procedure Multistart
iter ← 1
f (Best)←∞
repeat

choose a starting solution s0 at random
s ← DeepestDescent(s0)
if f (s) < f (Best) then

Best ← s
end if

iter ← iter + 1
until iter = IterMax

end

8012

Simulated annealing

Kirkpatrick 83

• Anneal: to heat and then slowly cool (esp. glass or metal) to reach minimal
energy state

• Like standard local search, but sometimes accept worse solution.

• Select random solution from the neighborhood and accept it with probability
Boltzmann distribution

p =
{

1, if f (new) < f (old),
exp(−(f (new)− f (old))/T), else.

• Start with high temperature T , and gradually lower it cooling schedule

8013

Acceptance probability

8014

 0
 2

 4
 6

 8
 10 5 10 15 20 25 30 35 40 45 50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

f(x, y)

Algorithm

s ← GenerateInitialSolution()
T ← T0
while termination conditions not met do
s′ ← PickAtRandom(N (s))
if (f (s′) < f (s)) then

s ← s′

else
Accept s′ as new solution with probability p(T , s′, s)

endif
Update(T)

endwhile

8015

Tabu search

Glover 86

• Local search with short term memory, to escape local minima and to avoid
cycles.

• Tabu list: Keep track of the last r moves, and don’t allow going back to these.

• Allowed set: Solutions that do not belong to the tabu list.

• Select solution from allowed set, add to tabu list, and update tabu list.

8016

Basic algorithm

s ← GenerateInitialSolution()
TabuList ← ∅
while termination conditions not met do
s ← ChooseBestOf(N (s) \ TabuList)
Update(TabuList)

endwhile

8017

Choices in tabu search

• Neighborhood

• Size of tabu list tabu tenure

• Kind of tabu to use (complete solutions vs. attributes)
 tabu conditions

• Aspiration criteria

• Termination condition

• Long-term memory: recency, frequency, quality, influence

8018

Refined algorithm

s ← GenerateInitialSolution()
Initialize TabuLists (TL1, ..., TLr)
k ← 0
while termination conditions not met do
AllowedSet(s, k)← {s′ ∈ N (s) |

s does not violate a tabu condition
or satisfies at least one aspiration condition }

s ← ChooseBestOf(AllowedSet(s, k))
UpdateTabuListsAndAspirationConditions()
k ← k + 1

endwhile

8019

II. Population-based search

• Evolutionary computation

• Ant colony optimization

8020

Evolutionary computation

• Idea: Mimic evolution - obtain better solutions by combining current ones.

• Keep several current solutions, called population or generation.

• Create new generation:

. select a pool of promising solutions, based on a fitness function.

. create new solutions by combining solutions in the pool in various ways
recombination, crossover.

. add random mutations.

• Variants: Evolutionary programming, evolutionary strategies, genetic algo-
rithms

8021

Algorithm

P ← GeneralInitialPopulation()
Evaluate(P)
while termination conditions not met do
P′ ← Recombine(P)
P′′ ← Mutate(P′)
Evaluate(P′′)
P ← Select(P′′ ∪ P)

endwhile

8022

Crossover and mutations

• Individuals (solutions) often coded as bit vectors

• Crossover operations provide new individuals, e.g.

101101 0110
000110 1011

101101 1011
000110 0110

• Mutations often helpful, e.g., swap random bit.

8023

Further issues

• Individuals vs. solutions

• Evolution process: generational replacement vs. steady state, fixed vs. variable
population size

• Use of neighborhood structure to define recombination partners (structured vs.
unstructured populations)

• Two-parent vs. multi-parent crossover

• Infeasible individuals: reject/penalize/repair

• Intensification by local search

• Diversification by mutations

8024

Ant colony optimization

Dorigo 92

• Observation: Ants are able to find quickly the shortest path from their nest to a
food source how ?

• Each ant leaves a pheromone trail.

• When presented with a path choice, they are more likely to choose the trail with
higher pheromone concentration.

• The shortest path gets high concentrations because ants choosing it can return
more often.

8025

Ant colony optimization (2)

• Ants are simulated by individual (ant) agents swarm intelligence

• Each decision variable has an associated artificial pheromone level.

• By dispatching a number of ants, the pheromone levels are adjusted according
to how useful they are.

• Pheromone levels may also evaporate to discourage suboptimal solutions.

8026

Construction graph

• Complete graph G = (C, L)

. C solution components

. L connections

• Pheromone trail values τi , for ci ∈ C.

• Heuristic values ηi

• Moves in the graph depend on transition probabilities

p(cr | sa[cl]) =

[ηr]α[τr]β∑

cu∈J(sa[cl])
[ηu]α[τu]β if cr ∈ J(sa[cl])

0 otherwise

8027

Algorithm (ACO)

InitializePheromoneValues
while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions() % optional

endScheduleActivities
endwhile

8028

Pheromone Update

Set

τj = (1− ρ)τj +
∑
a∈A

∆τsa
j ,

where

∆τsa
j =

F (sa) if cj is component of sa

0 otherwise .

8029

Intensification and diversification

Glover and Laguna 1997

The main difference between intensification and diversification is that during an in-
tensification stage the search focuses on examining neighbors of elite solutions.
. . . The diversification stage on the other hand encourages the search process to
examine unvisited regions and to generate solutions that differ in various significant
ways from those seen before.

8030

Case study: Time tabling

Rossi-Doria et al. 2002 http://iridia.ulb.ac.be/~meta/newsite/downloads/

tt_comparison.pdf

• Set of events E , set of rooms R, set of students S, set of features F

• Each student attends a number of events and each room has a size.

• Assign all events a timeslot and a room so that the following hard constraints
are satisfied:

. no student attends more than one event at the same time.

. the room is big enough for all attending students and satisfies all features
required by the event.

. only one event is in each room at any timeslot.

8031

http://iridia.ulb.ac.be/~meta/newsite/downloads/tt_comparison.pdf
http://iridia.ulb.ac.be/~meta/newsite/downloads/tt_comparison.pdf

Case study: Time tabling (2)

• Penalties for soft constraint violations

. a student has a class in the last slot of a day.

. a student has more than two classes in a row.

. a student has a single class on a day.

• Objective: Minimize number of soft constraint violations in a feasible solution

8032

Common neighborhood structure

• Solution ordered list of length |E |
The i-th element indicates the timeslot to which event i is assigned.

• Room assignments generated by matching algorithm.

• Neighborhood: N = N1 ∪ N2

. N1 moves a single event to a different timeslot

. N2 swaps the timeslots of two events.

8033

Common local search procedure

Stochastic first improvement local search

• Go through the list of all the events in a random order.

• Try all the possible moves in the neighbourhood for every event involved in
constraint violations, until improvement is found.

• Solve hard constraint violations first.
If feasibility is reached, look at soft constraint violations as well.

8034

Metaheuristics

1. Evolutionary algorithm

2. Ant colony optimization

3. Iterated local search

4. Simulated annealing

5. Tabu search

8035

1. Evolutionary algorithm

• Steady-state evolution process: at each generation only one couple of parent
individuals is selected for reproduction.

• Tournament selection: choose randomly a number of individuals from the cur-
rent population and select the best ones in terms of fitness function as parents.

• Fitness function: Weighted sum of hard and soft constraint violations,

f (s) := #hcv (s) · C + #scv (s)

8036

1. Evolutionary algorithm (2)

• Uniform crossover: for each event a timeslot’s assignment is inherited from the
first or second parent with equal probability.

• Mutation: Random move in an extended neighbourhood (3-cycle permutation).

• Search parameters: Population size n = 10, tournament size = 5, crossover
rate α = 0.8, mutation rate β = 0.5

• Find a balance between the number of steps in local search and the number of
generations.

8037

2. Ant colony optimization

• At each iteration, each of m ants constructs, event by event, a complete assign-
ment of the events to the timeslots.

• To make an assignment, an ant takes the next event from a pre-ordered list,
and probabilistically chooses a timeslot, guided by two types of information:

1. heuristic information: evaluation of the constraint violations caused by mak-
ing the assignment, given the assignments already made,

2. pheromone information: estimate of the utility of making the assignment, as
judged by previous iterations of the algorithm.

• Matrix of pheromone values τ : E × T → R≥0.
Initialization to a parameter τ0, update by local and global rules.

8038

2. Ant colony optimization (2)

• An event-timeslot pair which has been part of good solutions will have a high
pheromone value, and consequently have a higher chance of being chosen
again.

• At the end of the iterative construction, an event-timeslot assignment is con-
verted into a candidate solution (timetable) using the matching algorithm.

• This candidate solution is further improved by the local search routine.

• After all m ants have generated their candidate solution, a global update on
the pheromone values is performed using the best solution found since the
beginning.

8039

3. Iterated local search

• Provide new starting solutions obtained from perturbations of a current solution

• Often leads to far better results than using random restart.

• Four subprocedures

1. GenerateInitialSolution: generates an initial solution s0

2. Perturbation: modifies the current solution s leading to some intermediate
solution s′,

3. LocalSearch: obtains an improved solution s′′,

4. AcceptanceCriterion: decides to which solution the next perturbation is ap-
plied.

8040

Perturbation

• Three types of moves

P1: choose a different timeslot for a randomly chosen event;

P2: swap the timeslots of two randomly chosen events;

P3: choose randomly between the two previous types of moves and a 3-
exchange move of timeslots of three randomly chosen events.

• Strategy

. Apply each of these different moves k times, where k is chosen of the set
{1; 5; 10; 25; 50; 100}.

. Take random choices according to a uniform distribution.

8041

Acceptance criteria

• Random walk: Always accept solution returned by local search

• Accept if better

• Simulated annealing

SA1: P1(s, s′) = e−
f (s)−f (s′)

T

SA2: P2(s, s′) = e
− f (s)−f (s′)

T ·f (sbest)

Best parameter setting (for medium instances):

P1, k = 5, SA1 with T = 0.1

8042

4. Simulated annealing

Two phases

1. Search for feasible solutions, i.e., satisfy all hard constraints.

2. Minimize soft constraint violations.

8043

Strategies

• Initial temperature: Sample the neighbourhood of a randomly generated so-
lution, compute average value of the variation in the evaluation function, and
multiply this value by a given factor.

• Cooling schedule

1. Geometric cooling: Tn+1 = α× Tn, 0 < α < 1

2. Temperature reheating: Increase temperature if rejection ratio (= number of
moves rejected/number of moves tested) exceeds a given limit.

• Temperature length: Proportional to the size of the neighborhood

8044

5. Tabu search

• Moves done by moving one event or by swapping two events.

• Tabu list: Forbid a move if at least one of the events involved has been moved
less than l steps before.

• Size of tabu list l : number of events divided by a suitable constant k (here
k = 100).

• Variable neighbourhood set: every move is a neighbour with probability 0.1
decrease probability of generating cycles and reduce the size of neighbourhood
for faster exploration.

• Aspiration criterion: perform a tabu move if it improves the best known solution.

8045

Evaluation

http://iridia.ulb.ac.be/~msampels/ttmn.data/

• 5 small, 5 medium, 2 large instances

Type small medium large
|E | 100 400 400
|S| 80 200 400
|R| 5 10 10

• 500 resp. 50 resp. 20 independent trials per metaheuristic per instance.

• Diagrams show results of all trials on a single instance.

• Boxes show the range between 25% and 75% quantile.

8046

http://iridia.ulb.ac.be/~msampels/ttmn.data/

Evaluation (2)

• Small: All algorithms reach feasibility in every run,
ILS best, TS worst overall performance

• Medium: SA best, but does not achieve feasibility in some runs. ACO worst.

• Large01: Most metaheuristics do not even achieve feasibility. TS feasibility in
about 8% of the trials.

• Large02: ILS best, feasibility in about 97% of the trials, against 10% for ACO
and GA. SA never reaches feasibility. TS gives always feasible solutions, but
with worse results than ILS and AC0 in terms of soft constraints.

8047

0 50 100 150 200 250

10
0

15
0

20
0

25
0

30
0

Instance: medium01.tim Time: 900 sec

Rank

S

of
t C

on
st

ra
in

t V
io

la
tio

ns

ACO
GA
ILS
SA
TS

ACO GA ILS SA TS

100

150

200

250

300

Soft Constraint Violations

ACO

GA

ILS

SA

TS

0 50 100 150 200 250

Ranks

ACO GA ILS SA TS

Percentage of Invalid Solutions

Metaheuristic

P
er

ce
nt

0
20

40
60

80
10

0

8048

0 10 20 30 40 50 60 70

70
0

80
0

90
0

10
00

11
00

12
00

Instance: large02.tim Time: 9000 sec

Rank

S

of
t C

on
st

ra
in

t V
io

la
tio

ns

ACO
GA
ILS
SA
TS

ACO GA ILS TS

700

800

900

1000

1100

1200

Soft Constraint Violations

ACO

GA

ILS

SA

TS

0 10 20 30 40 50 60 70

Ranks

ACO GA ILS SA TS

Percentage of Invalid Solutions

Metaheuristic

P
er

ce
nt

0
20

40
60

80
10

0

8049

