
Maximum flow problem

7000

Network flows

• Network

. Directed graph G = (V , E)

. Source node s ∈ V , sink node t ∈ V

. Edge capacities: cap : E → R≥0

• Flow: f : E → R≥0 satisfying

1. Flow conservation constraints∑
e:target(e)=v

f (e) =
∑

e:source(e)=v
f (e), for all v ∈ V \ {s, t}

2. Capacity constraints

0 ≤ f (e) ≤ cap(e), for all e ∈ E

7001

Maximum flow problem

• Excess:

excess(v) =
∑

e:target(e)=v
f (e)−

∑
e:source(e)=v

f (e)

• If f is a flow, then excess(v) = 0, for all v ∈ V \ {s, t}

• Value of a flow: val(f) = excess(t)

• Maximum flow problem:

max{val(f) | f is a flow in G}

• Can be seen as a linear programming problem.

Lemma.
If f is a flow in G, then excess(t) = −excess(s).

7002

Maximum flow problem (2)

Proof. We have

excess(s) + excess(t) =
∑

v∈V
excess(v) = 0.

• First “=”: excess(v) = 0, for v ∈ V \ {s, t}

• Second “=”: For any edge e = (v , w), the flow through e appears twice in the
sum, positively in excess(w) and negatively in excess(v).

7003

Cuts

• A cut is a partition (S, T) of V , i.e., T = V \ S.

• (S, T) is an (s, t)-cut if s ∈ S and t ∈ T .

• Capacity of (S, T)

cap(S, T) =
∑

E∩(S×T)
cap(e)

• A cut is saturated by f if f (e) = cap(e), for all e ∈ E ∩ (S × T), and f (e) = 0, for
all e ∈ E ∩ (T × S).

Lemma.
If f is a flow and (S, T) an (s, t)-cut, then

val(f) =
∑

e∈E∩(S×T)
f (e) −

∑
e∈E∩(T×S)

f (e) ≤ cap(S, T).

If S is saturated by f , then val(f) = cap(S, T).
7004

Maximum flow problem (2)

Proof. We have

val(f) = −excess(s) = −
∑
u∈S

excess(u)

=
∑

e∈E∩(S×T)
f (e)−

∑
e∈E∩(T×S)

f (e)

≤
∑

e∈E∩(S×T)
cap(e)

= cap(S)

For a saturated cut, the inequality is an equality.

7005

Example

s t

1/0 1/1

2/12/2

1/1 s t

1/1 1/1

2/22/2

1/0

Remarks.

• A saturated cut proves the optimality of a flow.

• To show: for every maximal flow there is a saturated cut proving its optimality.

7006

Residual network

The residual network Gf for a flow f in G = (V , E) indicates the capacity unused by
f . It is defined as follows:

• Gf has the same node set as G.

• For every edge e = (v , w) in G, there are up to two edges e′ and e′′ in Gf :

1. if f (e) < cap(e), there is an edge e′ = (v , w) in Gf with residual capacity
r (e′) = cap(e)− f (e).

2. if f (e) > 0, there is an edge e′′ = (w , v) in Gf with residual capacity r (e′′) =
f (e).

7007

Example

s t

2/1 2/2

2/12/2

1/1 s t

2 2

12

1
1

2

7008

Maximum flows and the residual graph

Theorem.
Let f be an (s, t)-flow, let Gf be the residual graph w.r.t. f , and let S be the set of all
nodes reachable from s in Gf .

• If t ∈ S, then f is not maximum.

• If t 6∈ S, then S is a saturated cut and f is maximum.

7009

Maximum flows and the residual graph (2)

Proof (part 1).

If t is reachable from s in Gf , then f is not maximal.

• Let p be a simple path from s to t in Gf .

• Let δ be the minimum residual capacity of an edge in p.
By definition, r (e) > 0, for all edges e in Gf . Therefore, δ > 0.

• Construct a flow f ′ of value val(f) + δ:

f ′(e) =

f (e) + δ, if e′ ∈ p
f (e)− δ, if e′′ ∈ p
f (e), if neither e′ nor e′′ belongs to p.

• f ′ is a flow and val(f ′) = val(f) + δ.

7010

Maximum flows and the residual graph (3)

Example.

s t

2/1 2/2

2/12/2

1/1 s t

2/2 2/2

2/22/2

1/0

s t

1 2

12

1
1

1

7011

Maximum flows and the residual graph (4)

Proof (part 2).

If t is not reachable from s in Gf , then f is maximal.

• Let S be the set of nodes reachable from s in Gf , and let T = V \ S.

• There is no edge (v , w) in Gf with v ∈ S and w ∈ T .

• Hence

. f (e) = cap(e), for any e ∈ E ∩ (S × T), and

. f (e) = 0, for any e ∈ E ∩ (T × S).

• Thus S is saturated and, by the Lemma, f is maximal.

7012

Max-Flow-Min-Cut Theorem

Theorem.
The maximum value of a flow is equal to the minimum capacity of an (s, t)-cut:

max{val(f) | f is a flow} = min{cap(S, T) | (S, T) is an (s, t)-cut} .

7013

Ford-Fulkerson Algorithm

1. Start with the zero flow, i.e., f (e) = 0, for all e ∈ E .

2. Construct the residual network Gf .

3. Check whether t is reachable from s.

• if not, stop.

• if yes, increase flow along an augmenting path, and iterate.

7014

Analysis

• Let |V | = n and |E | = m.

• Each iteration takes time O(n + m).

• If capacities are arbitrary reals, the algorithm may run forever.

7015

Integer capacities

• Suppose capacities are integers, bounded by C.

• v∗ := value of maximum flow can be up to (n − 1)C.

• All flows constructed are integral (proof by induction).

• Every augmentation increases flow value by at least 1.

• Running time is O((n + m)v∗) → pseudo-polynomial .

7016

Edmonds-Karp Algorithm

• Compute shortest augmenting path, i.e., a shortest path from s to t in the resid-
ual network Gf , where each edge has distance 1.

• Apply, e. g., breadth-first search

• Resulting maximum flow algorithm can be implemented in O(nm2).

7017

Bipartite matching

• G = (V , E) undirected graph

• Matching: Subset of edges M ⊆ E , no two of which share an endpoint.

• Maximum matching: Matching of maximum cardinality.

• Perfect matching: Every vertex in V is matched.

• G bipartite: V = A ∪ B, A ∩ B = ∅, and each edge in E has one end in A and
one end in B.

7018

Example

7019

Reduction to a network flow problem

• Add a source s and edges (s, a) for a ∈ A, with capacity 1.

• Add a sink t and edges (b, t) for b ∈ B, with capacity 1.

• Direct edges in G from A to B, with capacity 1.

• Integral flows f correspond to matchings M, with val(f) = |M|.

• Ford-Fulkerson takes time O
(
(m + n)n

)
, since v∗ ≤ n.

• This can be improved to O(
√

n m).

7020

Illustration

7021

Marriage theorem

Theorem (Hall).
A bipartite graph G = (A ∪ B, E), with |A| = |B| = n, has a perfect matching if and
only if for all B′ ⊆ B, |B′| ≤ |N(B′)|, where N(B′) is the set of all neighbors of nodes
in B′.

7022

Example

7023

Proof

• Let (S, T) be an (s, t)-cut in the corresponding network.

• Let AS = A ∩ S, AT = A ∩ T , BS = B ∩ S, BT = B ∩ T .

cap(S, T) =
∑

e∈E∩S×T
cap(e)

= |AT | + |BS| + |N(BT) ∩ AS|
≥ |N(BT) ∩ AT | + |N(BT) ∩ AS| + |BS|
= |N(BT)| + |BS|
≥ |BT | + |BS| = |B| = n

• By the max-flow min-cut theorem, the maximum flow is at least n.

7024

Illustration

7025

König’s theorem

• G = (V , E) undirected graph

• C ⊆ V is a vertex cover if every edge of G has at least one end in C.

• Lemma: For any matching M and any vertex cover C, we have |M| ≤ |C|.

• Theorem (K önig). For a bipartite graph G,

max{|M| : M a matching } = min{|C| : C a vertex cover }.

7026

Network connectivity

• G = (V , E) directed graph, s, t ∈ V , s 6= t .

• Theorem (Menger). The maximum number of arc-disjoint paths from s to t
equals the minimum number of arcs whose removal disconnects all paths from
node s to node t .

• Theorem (Menger). The maximum number of node-disjoint paths from s to
t equals the minimum number of nodes whose removal disconnects all paths
from node s to node t .

7027

Duality in linear programming

• Primal problem

zP = max{cT x | Ax ≤ b, x ∈ Rn} (P)

• Dual problem

wD = min{bT u | AT u = c, u ≥ 0} (D)

7028

General form

(P) (D)

min cT x max uT b
w.r.t. Ai∗x ≥ bi , i ∈ M1 w.r.t ui ≥ 0, i ∈ M1

Ai∗x ≤ bi , i ∈ M2 ui ≤ 0, i ∈ M2
Ai∗x = bi , i ∈ M3 ui free, i ∈ M3

xj ≥ 0, j ∈ N1 (A∗j)
T u ≤ cj , j ∈ N1

xj ≤ 0, j ∈ N2 (A∗j)
T u ≥ cj , j ∈ N2

xj free, j ∈ N3 (A∗j)
T u = cj , j ∈ N3

7029

Duality theorems

• Weak duality If x∗ is primal and u∗ is dual feasible, then

cT x∗ ≤ zP ≤ wD ≤ bT u∗.

• Strong duality If both (P) and (D) have a finite optimum, then zP = wD.

• Only four possibilities

1. zP and wD are both finite and equal.

2. zP = +∞ and (D) is infeasible.

3. wD = −∞ and (P) is infeasible.

4. (P) and (D) are both infeasible.

7030

Maximum flow and duality

• Primal problem

max
∑

e:source(e)=s
xe −

∑
e:target(e)=s

xe

s.t.
∑

e:target(e)=v
xe −

∑
e:source(e)=v

xe = 0, ∀v ∈ V \ {s, t}

0 ≤ xe ≤ ce, ∀e ∈ E

• Dual problem

min
∑
e∈E

ceye

s.t. zw − zv + ye ≥ 0, ∀e = (v , w) ∈ E

zs = 1, zt = 0

ye ≥ 0, ∀e ∈ E

7031

Maximum flow and duality (2)

• Let (y∗, z∗) be an optimal solution of the dual.

• Define S = {v ∈ V | z∗v > 0} and T = V \ S.

• (S, T) is a minimum cut.

• Max-flow min-cut theorem is a special case of linear programming duality.

7032

Total unimodularity

• A matrix A is totally unimodular if each subdeterminant of A is 0, +1 or −1.

• Theorem (Hoffman and Kruskal). A ∈ Zm×n is totally unimodular iff the poly-
hedron P = {x ∈ Rn | Ax ≤ b, x ≥ 0} is integral, i.e., P = conv(P ∩ Zn), for
any b ∈ Zm.

• Corollary. A ∈ Zm×n is totally unimodular iff for any b ∈ Zm, c ∈ Zn both
optima in the LP duality equation

max{cT x | Ax ≤ b, x ≥ 0} = {min bT u | AT u ≥ c, u ≥ 0}

are attained by integral vectors (if they are finite).

• Proposition. The constraint matrix A arising in a maximum flow problem is
totally unimodular.

7033

References

• K. Mehlhorn: Data Structures and Efficient Algorithms, Vol. 2: Graph Algo-
rithms and NP-Completeness, Springer, 1986, http://www.mpi-sb.mpg.de/
~mehlhorn/DatAlgbooks.html

• R. K. Ahuja, T. L. Magnanti and J. L. Orlin: Network flows. Prentice Hall, 1993

• S. Krumke and H. Noltemeier: Graphentheoretische Konzepte und Algorith-
men. Teubner, 2005

7034

http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html
http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html

