Maximum flow problem

7000

Network flows

e Network
> Directed graph G = (V, E)
> Source node s € V, sinknodet € V

> Edge capacities: cap : E — R

e Flow: f:E — R satisfying

1. Flow conservation constraints

> f(e)= > f(e), forallv e V \ {s,t}

e:target(e)=v e:source(e)=v

2. Capacity constraints

0 <f(e) <cap(e), foralle € E

7001

Maximum flow problem

e EXcess:

excess(v) = Yo f(e) - > f(e)

e:target(e)=v e:source(e)=v

e Iff is a flow, then excess(v) =0, forallv e V \ {s,t}
e Value of a flow: val(f) = excess(t)

e Maximum flow problem:

max{val(f) | f is a flowin G}
e Can be seen as a linear programming problem.

Lemma.
If f is a flow in G, then excess(t) = —excess(s).

7002

Maximum flow problem @

Proof. We have

excess(s) + excess(t) = Z excess(v) = 0.
veV

e First“=": excess(v) =0,forv € V \ {s,t}

e Second “=": For any edge e = (v, w), the flow through e appears twice in the
sum, positively in excess(w) and negatively in excess(v).

7003

Cuts

e Acutisapartition (S,T)ofV,ie.,, T =V \S.
e (S, T)isan(s,t)-cutifse Sandt eT.

e Capacity of (S, T)

cap(S,T)= > cap(e)
EN(SxT)

e A cutis saturated by f if f(e) = cap(e), foralle € EN(S x T), and f(e) = 0, for
alee EN(T x9).

Lemma.
If f is aflow and (S, T) an (s, t)-cut, then

val(f) = > o fe) —) f(e) < cap(S,T).
ecEN(SxT) ecEN(T xS)

If S is saturated by f, then val(f) = cap(S, T).
7004

Maximum flow problem @

Proof. We have

val(f) = —excess(s)=— > excess(u)
UES
= >, fey— > f(e)
ecEN(SxT) ecEN(T xS)
< >, cap(e)
ecEN(SxT)
= cap(S)

For a saturated cut, the inequality is an equality.

7005

Example

Remarks.
e A saturated cut proves the optimality of a flow.

e To show: for every maximal flow there is a saturated cut proving its optimality.

7006

Residual network

The residual network G¢ for a flow f in G = (V, E) indicates the capacity unused by
f. It is defined as follows:

e G; has the same node set as G.

e For every edge e = (v,w) in G, there are up to two edges e’ and e” in Gs:

1. if f(e) < cap(e), there is an edge e’ = (v,w) in G; with residual capacity
r(e’) = cap(e) — f(e).

2. iff(e) > 0, there is an edge e” = (w, v) in G; with residual capacity r(e”) =

f(e).

7007

Example

7008

Maximum flows and the residual graph

Theorem.
Let f be an (s, t)-flow, let G be the residual graph w.r.t. f, and let S be the set of alll
nodes reachable from s in Gs.

o Ift €8S, then f Is not maximum.

e Ift £S5, then S is a saturated cut and f is maximum.

7009

Maximum flows and the residual graph

Proof (part 1).

If t is reachable from s in G¢, then f is not maximal.
e Letp be asimple path fromstotin Gs.

e Let) be the minimum residual capacity of an edge in p.
By definition, r(e) > O, for all edges e in Gs. Therefore, 6 > O.

e Construct a flow f/ of value val(f) + 6:

fe)+o, ife’ep
f'(e)=1{ f(e) -5, ife”cp

f(e), if neither e’ nor e’ belongs to p.

e f’is aflow and val(f’) = val(f) + 4.

(2)

7010

Maximum flows and the residual graph)

Example.

7011

Maximum flows and the residual graph @

Proof (part 2).

If t is not reachable from s in G, then f is maximal.
e Let S be the set of nodes reachable from s in Gs,and let T =V \ S.
e Thereisnoedge (v,w)in G withv e Sandw € T.

e Hence
> f(e) =cap(e),foranye c EN(S x T), and

> f(e)=0,foranye € EN(T x S).

e Thus S is saturated and, by the Lemma, f is maximal.

7012

Max-Flow-Min-Cut Theorem

Theorem.
The maximum value of a flow is equal to the minimum capacity of an (s, t)-cut:

max{val(f) | f is a flow} = min{cap(S,T) | (S, T) is an (s, t)-cut} .

7013

Ford-Fulkerson Algorithm

1. Start with the zero flow, i.e., f(e) =0, for alle € E.
2. Construct the residual network Gs.

3. Check whether t is reachable from s.
e if not, stop.

e If yes, increase flow along an augmenting path, and iterate.

7014

Analysis

e Let|V|=nand|E|=m.
e Each iteration takes time O(n + m).

e If capacities are arbitrary reals, the algorithm may run forever.

7015

Integer capacities

Suppose capacities are integers, bounded by C.

v* := value of maximum flow can be up to (n — 1)C.
All flows constructed are integral (proof by induction).
Every augmentation increases flow value by at least 1.

Running time is O((n + m)v*) — pseudo-polynomial.

7016

Edmonds-Karp Algorithm

e Compute shortest augmenting path, i.e., a shortest path from s to t in the resid-
ual network G¢, where each edge has distance 1.

e Apply, e.g., breadth-first search

e Resulting maximum flow algorithm can be implemented in O(nm?).

7017

Bipartite matching

e G =(V,E) undirected graph

e Matching: Subset of edges M C E, no two of which share an endpoint.
e Maximum matching: Matching of maximum cardinality.

e Perfect matching: Every vertex in V is matched.

e G bipartite: V = AUB,ANB = (), and each edge in E has one end in A and
one end in B.

7018

Example

7019

Reduction to a network flow problem

Add a source s and edges (s, a) for a € A, with capacity 1.
Add a sink t and edges (b, t) for b € B, with capacity 1.
Direct edges in G from A to B, with capacity 1.

Integral flows f correspond to matchings M, with val(f) = |[M|.
Ford-Fulkerson takes time O ((m + n)n), since v* < n.

This can be improved to O(/nm).

7020

lllustration

7021

Marriage theorem

Theorem (Hall).

A bipartite graph G = (AU B, E), with |A| = |B| = n, has a perfect matching if and
only if for all B’ C B, |B’| < [N(B’)|, where N(B’) is the set of all neighbors of nodes
in B’.

7022

Example

7023

Proof

e Let(S,T) be an (s, t)-cut in the corresponding network.

o LEtAS:AﬂS,AT :AﬂT,BS:BﬂS,BT =BNT.

cap(S,T) = > cap(e)
ecENSXT
= |Ar|+[Bg| +|N(BT) N Ag]
> IN(Bt)NAt[+[N(Br)NAs| + [Bs]
= [N(BT)| + |Bg]
> [Br[+[Bs|=[B[=n

e By the max-flow min-cut theorem, the maximum flow is at least n.

7024

lllustration

Ag=ANS Bs=BNS

N(Br)NS

Ap=ANT Br=BNT

7025

Konig’s theorem

G = (V, E) undirected graph
C C V is a vertex cover if every edge of G has at least one end in C.
Lemma: For any matching M and any vertex cover C, we have M| < |C|.

Theorem (K 0nig). For a bipartite graph G,

max{|M| : M a matching } = min{|C| : C a vertex cover }.

7026

Network connectivity

e G =(V,E)directed graph, s,t € V,s #t.

e Theorem (Menger). The maximum number of arc-disjoint paths from s to t
equals the minimum number of arcs whose removal disconnects all paths from
node s to node t.

e Theorem (Menger). The maximum number of node-disjoint paths from s to
t equals the minimum number of nodes whose removal disconnects all paths
from node s to node t.

7027

Duality in linear programming

e Primal problem

zp =max{c'x | Ax < b,x ¢ R™ (P)

e Dual problem

wp =min{b"u |ATu=c,u > 0} (D)

7028

General form

(P) (D)

min cTx max u'b
w.rt. AjpX > Dby, 1€M W.r.t ui > 0, I € M,
Ai*XSbi, | € My u; <0, I € M
Ai*X = bi, | € M3 Uj free, | € M3

Xj > 0, J c Nl
Xj <0,] € No
Xj free,] € N3

ANTu<c, jeN
AT u>c, jEN;
(A*j)T u= Cj, J - N3

7029

Duality theorems

e Weak duality If x* is primal and u* is dual feasible, then

clx* < zp < wp < bl u*.
e Strong duality If both (P) and (D) have a finite optimum, then zp = wp,.

e Only four possibilities
1. zp and wp are both finite and equal.
2. zp = +oo and (D) is infeasible.
3. wp = —oo and (P) is infeasible.

4. (P) and (D) are both infeasible.

7030

Maximum flow and duality

e Primal problem

max > Xe — > Xe

e:source(e)=s e:target(e)=s
S.t. Z Xe — Z Xe=0, WYWweV \ {S,t}
e:target(e)=v e:source(e)=v
0 < Xe < Cg, Ve € E
e Dual problem
min Z CeVYe
eckE

st. zw—2zy+tye >0, Ve=(v,w)€EeE
Zszl,Zt:O
yeZO, Ve € E

7031

Maximum flow and duality @

Let (y*, z*) be an optimal solution of the dual.
DefineS={veV|z;>0}andT =V \S.
(S, T) is a minimum cut.

Max-flow min-cut theorem is a special case of linear programming duality.

7032

Total unimodularity

A matrix A is totally unimodular if each subdeterminant of Ais 0,+1 or —1.

Theorem (Hoffman and Kruskal). A € ZM*" s totally unimodular iff the poly-
hedron P = {x € R" | Ax < b,x > 0} is integral, i.e., P = conv(P N Z"), for
any b € ZM.

Corollary. A € Z™M*N s totally unimodular iff for any b € ZM,c € Z" both
optima in the LP duality equation
max{c'x | Ax < b,x > 0} = {minb"u | ATu>c,u >0}

are attained by integral vectors (if they are finite).

Proposition. The constraint matrix A arising in a maximum flow problem is
totally unimodular.

7033

References

e K. Mehlhorn: Data Structures and Efficient Algorithms, Vol. 2: Graph Algo-
rithms and NP-Completeness, Springer, 1986, http://www.mpi-sb.mpg.de/
“mehlhorn/DatAlgbooks.html

e R. K. Ahuja, T. L. Magnanti and J. L. Orlin: Network flows. Prentice Hall, 1993

e S. Krumke and H. Noltemeier: Graphentheoretische Konzepte und Algorith-
men. Teubner, 2005

7034

http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html
http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html

