The Simplex algorithm

Sticking to certain pivoting rules prevents cycling:
E.g., Bland's rule: among multiple candidates for entering/leaving the basis always choose the one with the smallest subscript.

This answers the third issue (Termination):
Theorem. The simplex method with Bland's rule terminates after a finite number of steps.

Proof. Since the algorithm does not cycle and there are only $\binom{n+m}{m}$ different dictionaries, the claim follows.

Unfortunately, pathological instances exist (e. g., the Klee-Minty cube), for which the Simplex method needs exponential time. However,

- in practice, the method is fast.
- other methods (e. g., Ellipsoid method) run in polynomial time.

The Simplex algorithm

We are left with only one issue (Initialization):
How do we find an initial dictionary if

$$
\begin{array}{rlr}
\max & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1,2, \ldots, m \\
& x_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

has an infeasible origin?
Problems:

- Is there a feasible solution at all? (The problem might be infeasible)
- If so, how to find it?

The Simplex algorithm

Solution: Auxiliary problem

$$
\begin{array}{rrr}
\min & \quad \begin{array}{l}
x_{0} \\
\text { subject to } \\
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} \leq b_{i} \\
x_{j} \geq 0
\end{array} & i=1,2, \ldots, m \tag{AUX}\\
& j=0,1, \ldots, n
\end{array}
$$

Now, a feasible solution for (AUX) is easily found:
Set $x_{j}=0$ for $j \in\{1,2, \ldots, n\}$ and make x_{0} sufficiently large.
Furthermore: the original problem has a feasible solution if and only if the optimum value of (AUX) is zero.

Thus, we solve (AUX) first.

The Simplex algorithm

Example.

$\max x_{1}-x_{2}+x_{3}$
$\begin{array}{lll}\text { s.t. } & 2 x_{1}-x_{2}+2 x_{3} \leq 4 \\ & 2 x_{1}-3 x_{2}+x_{3} \leq-5 \quad \text { leads to } \\ & -x_{1}+x_{2}-2 x_{3} \leq-1 \\ & x_{1}, x_{2}, x_{3} \geq 0 & \end{array}$

$$
\max -x_{0} \quad(\mathrm{AUX})
$$

s. t. $2 x_{1}-x_{2}+2 x_{3}-x_{0} \leq 4$
$2 x_{1}-3 x_{2}+x_{3}-x_{0} \leq-5$
$-x_{1}+x_{2}-2 x_{3}-x_{0} \leq-1$
$x_{0}, x_{1}, x_{2}, x_{3} \geq 0$
The first dictionary for (AUX) then looks like

$$
\begin{aligned}
x_{4} & =4-2 x_{1}+x_{2}-2 x_{3}+x_{0} \\
x_{5} & =-5-2 x_{1}+3 x_{2}-x_{3}+x_{0} \\
x_{6} & =-1+x_{1}-x_{2}+2 x_{3}+x_{0} \\
w & =-x_{0}
\end{aligned}
$$

which is also infeasible! So where's the advantage?

The Simplex algorithm

We can make it feasible by one single pivot, namely by having x_{0} enter the basis and having x_{5} leave it.

This yields the feasible dictionary

$$
\begin{aligned}
& x_{0}=5+2 x_{1}-3 x_{2}+x_{3}+x_{5} \\
& x_{4}=9-2 x_{2}-x_{3}+x_{5} \\
& x_{6}=4+3 x_{1}-4 x_{2}+3 x_{3}+x_{5} \\
& w=-5-2 x_{1}+3 x_{2}-x_{3}-x_{5}
\end{aligned}
$$

from which we can read off the first feasible solution for (AUX)

$$
x=(5,0,0,0,9,0,6) \quad \text { with } \quad w=-5
$$

The Simplex algorithm

Two more iterations, namely
$x_{2}=1+\frac{3}{4} x_{1}+\frac{3}{4} x_{3}+\frac{1}{4} x_{5}-\frac{1}{4} x_{6}$
$x_{0}=2-\frac{1}{4} x_{1}-\frac{5}{4} x_{3}+\frac{1}{4} x_{5}+\frac{3}{4} x_{6}$
$x_{3}=\frac{8}{5}-\frac{1}{5} x_{1}+\frac{1}{5} x_{5}+\frac{3}{5} x_{6}-\frac{4}{5} x_{0}$
$x_{4}=7-\frac{3}{2} x_{1}-+\frac{5}{2} x_{3}+\frac{1}{2} x_{5}+\frac{1}{2} x_{6}$
and
$x_{2}=\frac{11}{5}+\frac{3}{5} x_{1}+\frac{2}{5} x_{5}+\frac{1}{5} x_{6}-\frac{3}{5} x_{0}$
$x_{4}=3-x_{1}-x_{6}+2 x_{0}$
$w=-2+\frac{1}{4} x_{1}+\frac{5}{4} x_{3}-\frac{1}{4} x_{5}-\frac{3}{4} x_{6}$
$w=-x_{0}$
solve (AUX) and its optimal value is $w=0$. Therefore, we can read off a first feasible solution

$$
\left(0, \frac{11}{5}, \frac{8}{5}, 3,0,0\right) \ldots
$$

The Simplex algorithm

... and a first feasible dictionary:

$$
\begin{aligned}
x_{3} & =\frac{8}{5}-\frac{1}{5} x_{1}+\frac{1}{5} x_{5}+\frac{3}{5} x_{6} \\
x_{2} & =\frac{11}{5}+\frac{3}{5} x_{1}+\frac{4}{5} x_{5}+\frac{1}{5} x_{6} \\
x_{4} & =3-x_{1}-x_{6} \\
z & =x_{1}-x_{2}+x_{3}=x_{1}-\left(\frac{11}{5}+\frac{3}{5} x_{1}+\frac{4}{5} x_{5}+\frac{1}{5} x_{6}\right)+\left(\frac{8}{5}-\frac{1}{5} x_{1}+\frac{1}{5} x_{5}+\frac{3}{5} x_{6}\right) \\
& =-\frac{3}{5}+\frac{1}{5} x_{1}-\frac{1}{5} x_{5}+\frac{2}{5} x_{6}
\end{aligned}
$$

Now, we can go on with the regular Simplex method.

The Simplex algorithm

General method (first phase of two-phase Simplex):
We solve

$$
\begin{array}{lll}
\max & -x_{0} \quad \text { (AUX) } & \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}-x_{0} \leq b_{i} & i=1,2, \ldots, m \\
& x_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

by starting with an infeasible dictionary

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}+x_{0} \quad i=1,2, \ldots, m \\
w & =-x_{0}
\end{aligned}
$$

We arrive at a feasible dictionary by swapping x_{0} with the "most infeasible" x_{n+i},

The Simplex algorithm

One more special rule when solving (AUX):
Whenever x_{0} is a candidate for leaving the basis, we pick it.
Why? Because we obtain a feasible solution with $x_{0}=0$ and thus $w=0$ due to the properties of a dictionary.

Do other cases exist? After termination of phase one

- x_{0} may be basic, and the value of w is zero. But then, in the previous iteration, we had $w<0$ and thus $x_{0}>0$ due to $w=-x_{0}$. So, we have not followed the special rule for picking x_{0} whenever possible; thus, this case may not occur.
- x_{0} may be basic, and the value of w is non-zero. This case proves that the original problem is infeasible.

The Simplex algorithm

We are now ready for the
Fundamental theorem of linear programming. Every LP problem has the following three properties:

1. If it has no optimal solution, then it is either infeasible or unbounded.
2. If it has a feasible solution, then it has a basic feasible solution.
3. If it has an optimal solution, then it has a basic optimal solution.

Proof (constructive). The first phase of the two-phase Simplex algorithm either dicsovers that the problem is infeasible or computes a basic feasible solution. The second phase then finds a basic optimal solution or discovers that the problem is unbounded.

Duality

Duality: Introductory example

Consider

$$
\begin{aligned}
\max & 4 x_{1}+x_{2}+5 x_{3}+3 x_{4} \\
\text { subject to } & x_{1}-x_{2}-x_{3}+3 x_{4} \leq 1 \\
& 5 x_{1}+x_{2}+3 x_{3}+8 x_{4} \leq 55 \\
& -x_{1}+2 x_{2}+3 x_{3}-5 x_{4} \leq 3 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Let us try to find a quick estimate on the optimal solution value z^{*}.
Lower bounds? Rather run Simplex. . .
Upper bounds?

Duality: Introductory example

Blackboard calculations lead to the dual problem

$$
\begin{aligned}
\min & y_{1}+55 y_{2}+3 y_{3} \\
\text { subject to } & y_{1}+5 y_{2}-y_{3} \geq 4 \\
& -y_{1}+y_{2}+2 y_{3} \geq 1 \\
& -y_{1}+3 y_{2}+3 y_{3} \geq 5 \\
& 3 y_{1}+8 y_{2}-5 y_{3} \geq 3 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

Duality

In general, the dual of

$$
\begin{array}{rlr}
\max & \sum_{j=1}^{n} c_{j} x_{j} & \text { (primal problem) } \tag{primalproblem}\\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1,2, \ldots, m \\
& x_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

is

$$
\begin{array}{rlr}
\min & \sum_{i=1}^{m} b_{i} y_{i} & \text { (dual problem) } \\
\text { subject to } & \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} & j=1,2, \ldots, n \\
& y_{i} \geq 0 & \\
\text { Lemma. (Weak duality) } & \sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{i=1}^{m} b_{i} y_{i} .2, \ldots, m \\
& \text { Proof. Blackboard. }
\end{array}
$$

