
The Simplex algorithm (2)

Sticking to certain pivoting rules prevents cycling:

E.g., Bland’s rule: among multiple candidates for entering/leaving the basis always
choose the one with the smallest subscript.

This answers the third issue (Termination):

Theorem. The simplex method with Bland’s rule terminates after a finite number of
steps.

Proof. Since the algorithm does not cycle and there are only
(

n+m
m

)
different dictio-

naries, the claim follows.

Unfortunately, pathological instances exist (e. g., the Klee-Minty cube), for which the
Simplex method needs exponential time. However,

• in practice, the method is fast.

• other methods (e. g., Ellipsoid method) run in polynomial time.
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The Simplex algorithm (3)

We are left with only one issue (Initialization):

How do we find an initial dictionary if

max
n∑

j=1
cjxj

subject to
n∑

j=1
aijxj ≤ bi i = 1, 2, ... , m

xj ≥ 0 j = 1, 2, ... , n

has an infeasible origin?

Problems:

• Is there a feasible solution at all? (The problem might be infeasible)

• If so, how to find it?
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The Simplex algorithm (4)

Solution: Auxiliary problem

min x0 (AUX)

subject to
n∑

j=1
aijxj − x0 ≤ bi i = 1, 2, ... , m

xj ≥ 0 j = 0, 1, ... , n

Now, a feasible solution for (AUX) is easily found:

Set xj = 0 for j ∈ {1, 2, ... , n} and make x0 sufficiently large.

Furthermore: the original problem has a feasible solution if and only if the optimum
value of (AUX) is zero.

Thus, we solve (AUX) first.
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The Simplex algorithm (5)

Example.

max x1 − x2 + x3

s. t. 2x1 − x2 + 2x3 ≤ 4

2x1 − 3x2 + x3 ≤ −5

− x1 + x2 − 2x3 ≤ −1

x1, x2, x3 ≥ 0

leads to

max −x0 (AUX)

s. t. 2x1 − x2 + 2x3−x0 ≤ 4

2x1 − 3x2 + x3−x0 ≤ −5

− x1 + x2 − 2x3−x0 ≤ −1

x0, x1, x2, x3 ≥ 0

The first dictionary for (AUX) then looks like

x4 = 4 − 2x1 + x2 − 2x3 + x0

x5 = −5 − 2x1 + 3x2 − x3 + x0

x6 = −1 + x1 − x2 + 2x3 + x0

w = −x0 ,

which is also infeasible! So where’s the advantage?
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The Simplex algorithm (6)

We can make it feasible by one single pivot, namely by having x0 enter the basis
and having x5 leave it.

This yields the feasible dictionary

x0 = 5 + 2x1 − 3x2 + x3 + x5

x4 = 9 − 2x2 − x3 + x5

x6 = 4 + 3x1 − 4x2 + 3x3 + x5

w = −5 − 2x1 + 3x2 − x3 − x5 ,

from which we can read off the first feasible solution for (AUX)

x = (5, 0, 0, 0, 9, 0, 6) with w = −5
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The Simplex algorithm (7)

Two more iterations, namely

x2 = 1 +
3

4
x1 +

3

4
x3 +

1

4
x5 −

1

4
x6

x0 = 2 −
1

4
x1 −

5

4
x3 +

1

4
x5 +

3

4
x6

x4 = 7 −
3

2
x1 − +

5

2
x3 +

1

2
x5 +

1

2
x6

w = −2 +
1

4
x1 +

5

4
x3 −

1

4
x5 −

3

4
x6

and

x3 =
8

5
−

1

5
x1 +

1

5
x5 +

3

5
x6 −

4

5
x0

x2 =
11

5
+

3

5
x1 +

2

5
x5 +

1

5
x6 −

3

5
x0

x4 = 3 − x1 − x6 + 2x0

w = −x0

solve (AUX) and its optimal value is w = 0. Therefore, we can read off a first feasible
solution

(0,
11

5
,
8

5
, 3, 0, 0) ...
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The Simplex algorithm (8)

. . . and a first feasible dictionary:

x3 =
8

5
−

1

5
x1 +

1

5
x5 +

3

5
x6

x2 =
11

5
+

3

5
x1 +

4

5
x5 +

1

5
x6

x4 = 3 − x1 − x6

z = x1 − x2 + x3 = x1 − (
11

5
+

3

5
x1 +

4

5
x5 +

1

5
x6) + (

8

5
−

1

5
x1 +

1

5
x5 +

3

5
x6)

= −
3

5
+

1

5
x1 −

1

5
x5 +

2

5
x6

Now, we can go on with the regular Simplex method.
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The Simplex algorithm (9)

General method (first phase of two-phase Simplex):

We solve

max − x0 (AUX)

s.t.
n∑

j=1
aijxj − x0 ≤ bi i = 1, 2, ... , m

xj ≥ 0 j = 1, 2, ... , n

by starting with an infeasible dictionary

xn+i = bi −
n∑

j=1
aijxj + x0 i = 1, 2, ... , m

w = −x0

We arrive at a feasible dictionary by swapping x0 with the “most infeasible” xn+i ,
more precisely, with xn+(arg mini=1,...,m bi ).
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The Simplex algorithm (10)

One more special rule when solving (AUX):

Whenever x0 is a candidate for leaving the basis, we pick it.

Why? Because we obtain a feasible solution with x0 = 0 and thus w = 0 due to the
properties of a dictionary.

Do other cases exist? After termination of phase one

• x0 may be basic, and the value of w is zero. But then, in the previous iteration,
we had w < 0 and thus x0 > 0 due to w = −x0. So, we have not followed the
special rule for picking x0 whenever possible; thus, this case may not occur.

• x0 may be basic, and the value of w is non-zero. This case proves that the
original problem is infeasible.
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The Simplex algorithm (11)

We are now ready for the

Fundamental theorem of linear programming. Every LP problem has the following
three properties:

1. If it has no optimal solution, then it is either infeasible or unbounded.

2. If it has a feasible solution, then it has a basic feasible solution.

3. If it has an optimal solution, then it has a basic optimal solution.

Proof (constructive). The first phase of the two-phase Simplex algorithm either
dicsovers that the problem is infeasible or computes a basic feasible solution. The
second phase then finds a basic optimal solution or discovers that the problem is
unbounded.
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Duality
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Duality: Introductory example

Consider

max 4x1 + x2 + 5x3 + 3x4

subject to x1 − x2 − x3 + 3x4 ≤ 1

5x1 + x2 + 3x3 + 8x4 ≤ 55

− x1 + 2x2 + 3x3 − 5x4 ≤ 3

x1, x2, x3, x4 ≥ 0

Let us try to find a quick estimate on the optimal solution value z∗.

Lower bounds? Rather run Simplex. . .

Upper bounds?
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Duality: Introductory example (2)

Blackboard calculations lead to the dual problem

min y1 + 55y2 + 3y3

subject to y1 + 5y2 − y3 ≥ 4

− y1 + y2 + 2y3 ≥ 1

− y1 + 3y2 + 3y3 ≥ 5

3y1 + 8y2 − 5y3 ≥ 3

y1, y2, y3 ≥ 0
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Duality

In general, the dual of

max
n∑

j=1
cjxj (primal problem)

subject to
n∑

j=1
aijxj ≤ bi i = 1, 2, ... , m

xj ≥ 0 j = 1, 2, ... , n

is

min
m∑

i=1
biyi (dual problem)

subject to
m∑

i=1
aijyi ≥ cj j = 1, 2, ... , n

yi ≥ 0 i = 1, 2, ... , m

Lemma. (Weak duality)
n∑

j=1
cjxj ≤

m∑
i=1

biyi . Proof. Blackboard.
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