
The Simplex algorithm: Introductory example

The following introduction to the Simplex algorithm is from the book Linear Program-
ming by V. Chvátal.

Example:

max 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0
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The Simplex algorithm: Introductory example (2)

Introduce slack variables and obtain standard form∗:

x4 = 5− 2x1 − 3x2 − x3

x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

max z subject to x1, ... , x6 ≥ 0

Slack variables: x4, x5, x6

Decision variables: x1, x2, x3

∗Note: Chvátal calls the form on the previous slide standard form.
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The Simplex algorithm: Introductory example (3)

Idea of the Simplex algorithm: Start with feasible solution x1, ... , x6 and try to find
another feasible solution x̄1, ... , x̄6 with

5x̄1 + 4x̄2 + 3x̄3 > 5x1 + 4x2 + 3x3 .

Iterate until optimal solution is found.

Problem 1: Find first feasible solution. In our example it is easy:

x = (0, 0, 0, 5, 11, 8)

will do and yields z = 0.
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The Simplex algorithm: Introductory example (4)

Problem 2: Finding a better feasible solution.

Looking at z, we have to increase x1, x2, or x3.

Blackboard calculations tell us: x1 ≤ 5
2, x1 ≤ 11

4 , x1 ≤ 8
3, so

x̄ = (5
2, 0, 0, 0, 1, 1

2) yielding z = 25
2 .

Finding an even better solution? Not so easy. We rewrite our system of equations
such that, again, nonzero variables appear at the left-hand side and zero variables
on the right-hand side (thus, x1 and x4 swap their positions):

x1 =
5

2
−

1

2
x4 −

3

2
x2 −

1

2
x3
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The Simplex algorithm: Introductory example (5)

New system:

x1 =
5

2
−

1

2
x4 −

3

2
x2 −

1

2
x3

x5 = 1 + 5x2 + 2x4

x6 =
1

2
+

1

2
x2 −

1

2
x3 +

3

2
x4

z =
25

2
−

7

2
x2 +

1

2
x3 −

5

2
x4

Next step: increase x3.

Blackboard calculations: x3 = 1, yielding (2, 0, 1, 0, 1, 0) and z = 13.
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The Simplex algorithm: Introductory example (6)

New system:

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2− 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

z = 13− 3x2 − x4 − x6

We are done!

Why? We have found a solution with z = 13 and every feasible solution must satisfy
z = 13− 3x2 − x4 − x6 and x2, x4, x6 ≥ 0.
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The Simplex algorithm

Given a problem

max
n∑

j=1
cjxj

subject to
n∑

j=1
aijxj ≤ bi i = 1, 2, ... , m

xj ≥ 0 j = 1, 2, ... , n

we introduce slack variables and arrive at our first dictionary

xn+i = bi −
n∑

j=1
aijxj i = 1, 2, ... , m

z =
n∑

j=1
cjxj ,

which characterizes each feasible solution as n + m non-negative numbers
x1, ... , xn, xn+1, ... , xn+m, where xn+1, ... , xn+m depend on x1, ... , xn.
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The Simplex algorithm (2)

An iteration of the Simplex algorithm consists of replacing a feasible solution

x1, ... , xn+m by x̄1, ... , x̄n+m ,

with
n∑

j=1
cj x̄j >

n∑
j=1

cjxj .∗

We do so by choosing a (non-basic) variable xN from the right-hand side with posi-
tive objective function coefficient and increasing its value maximally, thereby setting
a left-hand side (basic) variable xB to zero.

We compute a new dictionary where xN is left (basic) and xB is right (non-basic).

∗As we will later see, the inequality is not always strict.
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The Simplex algorithm (3)

Definition: (dictionary)

• The equations in a dictionary express m of the variables x1, ... , xm+n and the
objective function z in terms of the remaining n variables.

• Every solution of a dictionary must be also a solution of the first dictionary.

A dictionary is feasible if setting the non-basic variables to zero and evaluating the
basic variables yields a feasible solution.

The Simplex algorithm moves from feasible dictionary to feasible dictionary.
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The Simplex algorithm (4)

Are we done? No!

• How do we find the first feasible dictionary? (Initialization)

• Can we always find an entering and leaving variable to construct the next dic-
tionary? (Iteration)

• Does the process terminate? (Termination)
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The Simplex algorithm (5)

We start with the second issue (Iteration):

Consider the last row of a dictionary

z = z∗ +
∑
j∈N

c̄jxj ,

where N contains the indices of non-basic variables. If c̄j ≤ 0 for all j ∈ N, we are
done.

Otherwise, choose any variable with positive coefficient for entering the basis, e. g.,
the one with the largest coefficient c̄j .

Now the leaving variable is that basic variable whose non-negativity imposes the
most stringent upper bound on the increase of the entering variable.

Problems:

1. no candidate

2. multiple candidates
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The Simplex algorithm (6)

Problem 1 (no candidate). Consider

x2 = 5 + 2x3 − x4 − 3x1

x5 = 7− 3x4 − 4x1

z = 5 + x3 − x4 − x1

No restrictions on x3. Setting x3 = t yields

x = (0, 5 + 2t , t , 0, 7) with z = 5 + t ,

that is, the problem is unbounded . Of course, this holds in general.

Problem 2 (multiple candidates). In this case, we may choose any candidate. This
leads, however, to degenerate solutions.
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The Simplex algorithm (7)

A basic solution is degenerate if one or more basic variables are at zero.

This might have an annoying side effect: non-increasing iterations.

Example:

x4 = 1− 2x3

x5 = 3− 2x1 + 4x2 − 6x3

x6 = 2 + x1 − 3x2 − 4x3

z = 2x1 − x2 + 8x3

If, as in this example, only a few iterations are degenerate, this is not a big problem.
Otherwise, we may cycle, which is a serious problem!
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The Simplex algorithm (8)

Cycling.

Can the Simplex go through an endless sequence of iterations without ever finding
an optimal solution?

Yes:
x5 = −

1

2
x1 +

11

2
x2 +

5

2
x3 − 9x4

x6 = −
1

2
x1 +

3

2
x2 +

1

2
x3 − x4

x7 = 1− x1

z = 10x1 − 57x2 − 9x3 − 24x4

Now, choosing the entering variable according to the “largest coefficient” rule and
the leaving variable according to the “lexicographic” rule, we will see the same dic-
tionary again after six iterations!

2013


