The Simplex algorithm: Introductory example

The following introduction to the Simplex algorithm is from the book Linear Program-
ming by V. Chvatal.

Example:

max 5Xjp +4Xy + 3X3
subjectto 2x7 +3Xy + X3 <5
4x1 +Xo +2x3 < 11
3X1 +4Xy +2X3 < 8
X1,X2,X3 >0
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Introduce slack variables and obtain standard form™:

Xq =95 — 2X1 — 3X9 — X3
Xg =11 — 4X1 — Xo — 2X3
Xg = 8 — 3X1 — 4Xo — 2X3
Z = OXq + 4%y + 3X3

maxz subjectto Xq,...,Xg >0

Slack variables: x4, X5, Xg

Decision variables: X4, X2, X3

*Note: Chvatal calls the form on the previous slide standard form.

(2)
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ldea of the Simplex algorithm: Start with feasible solution x4, ..., Xg and try to find
another feasible solution X1, ..., Xg With

5)?1 + 4)?2 + 3)?3 > 5X1 + 4X2 + 3X3 :
Iterate until optimal solution is found.

Problem 1: Find first feasible solution. In our example it is easy:

x =(0,0,0,5,11, 8)

will do and yields z = 0.
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Problem 2: Finding a better feasible solution.
Looking at z, we have to increase X1, X», Or X3.

Blackboard calculations tell us: x; < % X1 < ﬂ, X1 < 8 so
_ 2
=(3,0,0,0,1,3) yielding z=% .
Finding an even better solution? Not so easy. We rewrite our system of equations

such that, again, nonzero variables appear at the left-hand side and zero variables
on the right-hand side (thus, x4 and x4 swap their positions):

5 1 3 1
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New system:

Next step: increase Xs.

Blackboard calculations: x3 = 1, yielding (2,0, 1,0,1,0) and z = 13.

=2 L, 8 L
2 2 2 2

X5 =1+ 55Xy + 2%y

Xg = S+ Sy — 1xg 4 Sx,
2 2 2 2

.25 7 1 5
2 2727 73T 74

(5)
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New system:
X3 =1+ Xy +3Xg4 — 2Xg
X1 = 2—2X2 —2X4+X6
X5 =1+ 55Xy + 2%y
Zz =13 — 3Xyp — X4 — Xg
We are done!

Why? We have found a solution with z = 13 and every feasible solution must satisfy
Z =13 — 3Xy — X4 — Xg and Xo, X4, Xg > 0.
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The Simplex algorithm

Given a problem

=1
n
subjectto ) ajxj < b; i=1,2,..,m
=1
ijO j=1,2,...,n

we introduce slack variables and arrive at our first dictionary

n
Xn+i :bi —Zainj I =1,2,...,m
=1

which characterizes each feasible solution as n + m non-negative numbers

X1, -+ » XN, Xpt+1s -+ » Xn+m, Where Xp41, .-, Xn+m depend on Xq, ..., Xn. oo
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An iteration of the Simplex algorithm consists of replacing a feasible solution

X1y ey Xn+m by )?1,...,)?n+m .
with
n _ n
D CiX > > g
j=1 j=1
We do so by choosing a (non-basic) variable xy from the right-hand side with posi-

tive objective function coefficient and increasing its value maximally, thereby setting
a left-hand side (basic) variable xg to zero.

We compute a new dictionary where xy; is left (basic) and xg is right (non-basic).

*As we will later see, the inequality is not always strict.
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The Simplex algorithm ¢
Definition: (dictionary)

e The equations in a dictionary express m of the variables x4, ..., Xm+n and the
objective function z in terms of the remaining n variables.

e Every solution of a dictionary must be also a solution of the first dictionary.

A dictionary is feasible if setting the non-basic variables to zero and evaluating the
basic variables yields a feasible solution.

The Simplex algorithm moves from feasible dictionary to feasible dictionary.
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Are we done? No!
e How do we find the first feasible dictionary? (Initialization)

e Can we always find an entering and leaving variable to construct the next dic-
tionary? (lteration)

e Does the process terminate? (Termination)
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We start with the second issue (Iteration):

Consider the last row of a dictionary

— * ~ V.
z=2z"+ Z CiXj
jeN
where N contains the indices of non-basic variables. If EJ < Oforallj € N, we are
done.

Otherwise, choose any variable with positive coefficient for entering the basis, e. g.,
the one with the largest coefficient EJ .

Now the leaving variable is that basic variable whose non-negativity imposes the
most stringent upper bound on the increase of the entering variable.

Problems:
1. no candidate

2. multiple candidates
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Problem 1 (no candidate). Consider
Xo =5+ 2X3 — X4 — 3Xq
X5 =7 — 3Xq4 — 4X1
Z=5+X3— X4 —X1
No restrictions on x3. Setting X3 =t yields
X =(0,5+2t,t,0,7) with z=5+t ,

that is, the problem is unbounded. Of course, this holds in general.

Problem 2 (multiple candidates). In this case, we may choose any candidate. This
leads, however, to degenerate solutions.
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A basic solution is degenerate if one or more basic variables are at zero.
This might have an annoying side effect: non-increasing iterations.
Example:

Xq =1 — 2X3

Xg =3 — 2X1 + 4Xy — 6X3
Xg = 2+ X1 — 3Xp — 4X3
Z = 2Xq — X9 + 8X3

If, as in this example, only a few iterations are degenerate, this is not a big problem.
Otherwise, we may cycle, which is a serious problem!
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Cycling.

The Simplex algorithm ¢

Can the Simplex go through an endless sequence of iterations without ever finding

an optimal solution?

Yes:

Xg = 1x +11x +5x Ox
5 21 5 2 23 4
Xg = 1x +3x +1x X

6 21 22 23 4

X7=1—-Xq

Z = 10xq — 57Xy — 9X3 — 24X4

Now, choosing the entering variable according to the “largest coefficient” rule and
the leaving variable according to the “lexicographic” rule, we will see the same dic-
tionary again after six iterations!
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