Linear programming

Optimization Problems

General optimization problem

 $\max\{z(x) \mid f_j(x) \le 0, x \in D\} \text{ or } \min\{z(x) \mid f_j(x) \le 0, x \in D\}$ where $D \subseteq \mathbb{R}^n$, $f_j : D \to \mathbb{R}$, for $j = 1, ..., m, z : D \to \mathbb{R}$.

• Linear optimization problem

$$\max\{c^{T}x \mid Ax \stackrel{\leq}{=} b, x \in \mathbb{R}^{n}\}, \text{ with } c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$$

• Integer optimization problem: $x \in \mathbb{Z}^n$

• 0-1 optimization problem: $x \in \{0, 1\}^n$

Feasible and optimal solutions

Consider the optimization problem

$$\max\{z(x) \mid f_j(x) \le 0, x \in D, j = 1, ..., m\}$$

- A feasible solution is a vector $x' \in D \subseteq \mathbb{R}^n$ such that $f_j(x') \leq 0$, for all j = 1, ..., m.
- The set of all feasible solutions is called the feasible region.
- An optimal solution x^* is a feasible solution such that

$$z(x^*) = \max\{z(x) \mid f_j(x) \le 0, x \in D, j = 1, ..., m\}.$$

- Feasible or optimal solutions
 - \triangleright need not exist,
 - need not be unique.

Transformations

• min{
$$z(x) \mid x \in S$$
} = max{ $-z(x) \mid x \in S$ }.

•
$$f(x) \ge a$$
 if and only if $-f(x) \le -a$.

•
$$f(x) = a$$
 if and only if $f(x) \le a \land -f(x) \le -a$.

Lemma

Any linear programming problem can be brought to the form

 $\max\{c^{T}x \mid Ax \leq b\} \quad \text{or} \quad \max\{c^{T}x \mid Ax = b, x \geq 0\}.$ *Proof:* a) $a^{T}x \leq \beta \iff a^{T}x + x' = \beta, x' \geq 0$ (slack variable) b) x free $\rightsquigarrow x = x^{+} - x^{-}, x^{+}, x^{-} \geq 0.$

Practical problem solving

- 1. Model building
- 2. Model solving
- 3. Model analysis

Example: Production problem

A firm produces *n* different goods using *m* different raw materials.

- b_i : availabe amount of the *i*-th raw material
- a_{ij}: number of units of the *i*-th material needed to produce one unit of the *j*-th good
- c_i : revenue for one unit of the *j*-th good.

Decide how much of each good to produce in order to maximize the total revenue \rightsquigarrow decision variables x_j .

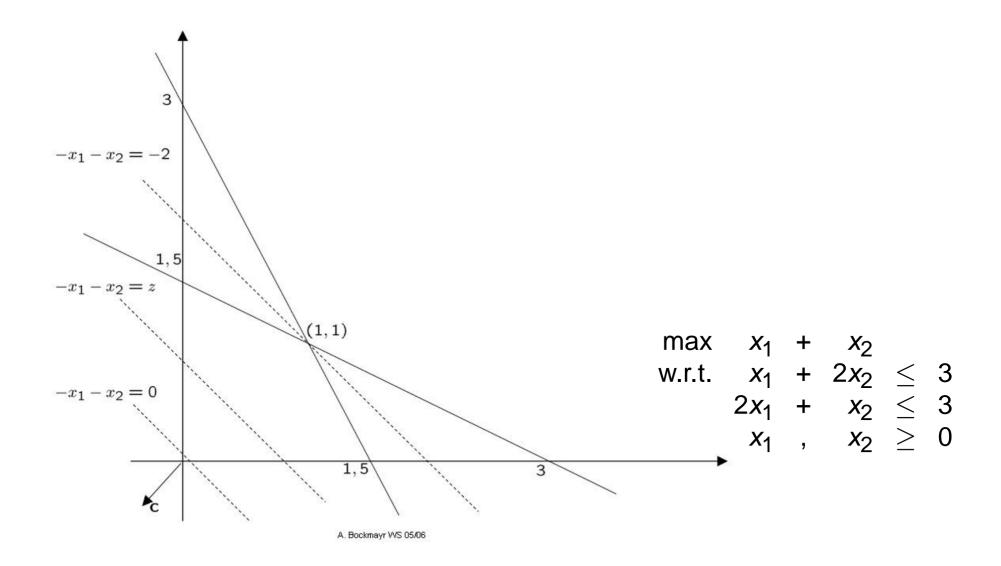
Linear programming formulation

In matrix notation:

$$\max\{c^Tx \mid Ax \leq b, x \geq 0\},$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n, x \in \mathbb{R}^n.$

Geometric illustration



Polyhedra

• Hyperplane $H = \{x \in \mathbb{R}^n \mid a^T x = \beta\}, a \in \mathbb{R}^n \setminus \{0\}, \beta \in \mathbb{R}$

• Closed halfspace
$$\overline{H} = \{x \in \mathbb{R}^n \mid a^T x \leq \beta\}$$

- Polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- Polytope $P = \{x \in \mathbb{R}^n \mid Ax \le b, I \le x \le u\}$

The feasible set

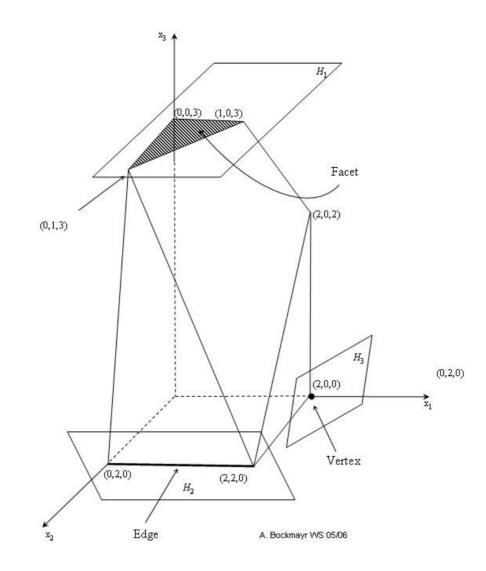
 $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

- $P \subseteq \overline{H}, H \cap P \neq \emptyset$ (Supporting hyperplane)
- $F = P \cap H$ (Face)
- $\dim(F) = 0$ (Vertex)
- dim(F) = 1 (Edge)
- dim(F) = dim(P) 1 (Facet)
- P pointed: P has at least one vertex.

Illustration



Simplex Algorithm: Geometric view

Linear optimization problem

$$\max\{c^T x \mid Ax \le b, x \in \mathbb{R}^n\}$$
(LP)

Simplex-Algorithm (Dantzig 1947)

- 1. Find a vertex of *P*.
- 2. Proceed from vertex to vertex along edges of *P* such that the objective function $z = c^T x$ increases.
- **3**. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which *z* is unbounded.