
Universal hashing

No matter how we choose our hash function, it is always possible to devise a set of
keys that will hash to the same slot, making the hash scheme perform poorly.

To circumvent this, we randomize the choice of a hash function from a carefully
designed set of functions. Let U be the set of universe keys and H be a finite
collection of hash functions mapping U into {0, 1, ... , m − 1}. Then H is called
universal if, for x , y ∈ U, (x 6= y),

|{h ∈ H : h(x) = h(y)}| =
|H|

m
.

In other words, the probability of a collision for two different keys x and y given a
hash function randomly chosen from H is 1/m.

Theorem. If h is chosen from a universal class of hash functions and is used to
hash n keys into a table of size m, where n ≤ m, the expected number of collisions
involving a particular key x is less than 1.

9000

Universal hashing (2)

How can we create a set of universal hash functions? One possibility is as follows:

1. Choose the table size m to be prime.

2. Decompose the key x into r + 1 “bytes” so that x = 〈x0, x1, ... , xr〉, where the
maximal value of any xi is less than m.

3. Let a = 〈a0, a1, ... , ar〉 denote a sequence of r + 1 elements chosen randomly
such that ai ∈ {0, 1, ... , m − 1}. There are mr+1 possible such sequences.

4. Define a hash function ha with ha(x) =
r

∑

i=0
aixi mod m.

5. H =
⋃

a
{ha} with mr+1 members, one for each possible sequence a.

9001

Universal hashing (3)

Theorem.
The class H defined above defines a universal class of hash functions.

9002

Universal hashing (4)

Proof. Consider any pair of distinct keys x and y and assume h(x) = h(y) as well
as w.l.o.g. x0 6= y0. Then for any fixed 〈a1, a2, ... , ar〉 it holds:

r
∑

i=0
aixi mod m =

r
∑

i=0
aiyi mod m .

Hence:
r

∑

i=0
ai(xi − yi) mod m = 0

Hence:

a0(x0 − y0) ≡ −
r

∑

i=1
aixi mod m .

Note that m is prime and (x0− y0) is non-zero, hence it has a (unique) multiplicative
inverse modulo m. Multiplying both sides of the equation with this inverse yields:

a0 ≡ −
r

∑

i=1
(aixi) · (x0 − y0)−1 mod m .

9003

and there is a unique a0 mod m which allows h(x) = h(y).

Each pair of keys x and y collides for exactly mr values of a, once for each possible
value of 〈a1, a2, ... , ar〉. Hence, out of mr+1 combinations of a0, a1, a2, ... , ar , there
are exactly mr collisions of x and y , and hence the probability that x and y collide
is mr/mr+1 = 1/m. Hence H is universal. �

Open addressing

The idea of open addressing is to trade table size for pointers. All elements are
directly stored in the hash table.

To perform an insertion we now probe the hash table for an empty slot in some
systematic way. Instead of using a fixed order, the sequence of positions probed
depends on the key to be inserted.

The hash function is redefined as

h : U × {0, 1, ... , m − 1} 7→ {0, 1, ... , m − 1}

For every key k the probe sequence

〈h(k , 0), h(k , 1), ... , h(k , m − 1)〉

is considered. If no free position is found in the sequence the hash table overflows.

9004

Open addressing (2)

The main problem with open addressing is the deletion of elements. We cannot
simply set an element to NIL, since this could break a probe sequence for other
elements in the table.

It is possible to use a special purpose marker instead of NIL when an element is
removed. However, using this approach the search time is no longer dependent on
the load factor α. Because of those reasons, open-address hashing is usually not
done when delete operations are required.

9005

Probe sequences

In the analysis of open addressing we make the assumption of uniform hashing.

To compute the probe sequences there are three different techniques commonly
used.

1. linear probing

2. quadratic probing

3. double hashing

These techniques guarantee that 〈h(k , 0), h(k , 1), ... , h(k , m − 1)〉 is a permutation
of 〈0, 1, ... , m − 1〉 for each k , but none fullfills the assumption of uniform hashing,
since none can generate more than m2 sequences.

9006

Probe sequences (2)

Given h′ : U 7→ {0, 1 ... , m − 1}, linear probing uses the hash function:

h(k , i) = (h′(k) + i) mod m for i = 0, 1, ... , m − 1 .

Given key k , the first slot probed is T [h′(k)] then T [h′(k) + 1] and so on. Hence, the
first probe determines the remaining probe sequence.

This methods is easy to implement but suffers from primary clustering, that is, two
hash keys that hash to different locations compete with each other for successive
rehashes. Hence, long runs of occupied slots build up, increasing search time.

9007

Probe sequences (3)

For example, if we have n = m/2 keys in the table, where every even-indexed slot
is occupied and every odd-indexed slot is free, then the average search time takes
1.5 probes.

If the first n = m/2 locations are the ones occupied, however, the average number
of probes increases to n/4 = m/8.

9008

Probe sequences (4)

Clusters are likely to arise, since if an empty slot is preceded by i full slots, then the
probability that the empty slot is the next one filled is (i + 1)/m compared with the
probability of 1/m if the preceding slot was empty.

Thus, runs of occupied slots tend to get longer, and linear probing is not a very good
approximation to uniform hashing.

9009

Probe sequences (5)

Quadratic probing uses a hash function of the form

h(k , i) = (h′(k) + c1i + c2i2) mod m for i = 0, 1, ... , m − 1 ,

where h′ : U 7→ {0, 1 ... , m−1} is an auxiliary hash function and c1, c2 6= 0 auxiliary
constants. Note that c1 and c2 must be carefully choosen.

Quadratic probing is better than linear probing, because it spreads subsequent
probes out from the initial probe position. However, when two keys have the same
initial probe position, their probe sequences are the same, a phenomenon known
as secondary clustering.

9010

Probe sequences (6)

Double hashing is one of the best open addressing methods, because the permuta-
tions produced have many characteristics of randomly chosen permutations. It uses
a hash function of the form

h(k , i) = (h1(k) + ih2(k)) mod m for i = 0, 1, ... , m − 1 ,

where h1 and h2 are auxiliary hash functions.

The initial position probed is T [h1(k) mod m] , with successive positions offset by
the amount ih2(k) mod m. Now keys with the same initial probe position can have
different probe sequences.

9011

Probe sequences (7)

Note that h2(k) must be relatively prime to m for the entire hash table to be acces-
sible for insertion and search. Or, to put it differently, if d = gcd(h2(k), m) > 1 for
some key k , then the search for key k would only access 1/d-th of the table.

A convenient way to ensure that h2(k) is relatively prime to m is to select m as a
power of 2 and design h2 to produce an odd positive integer. Or, select a prime m
and let h2 produce a positive integer less than m.

Double hashing is an improvement over linear and quadratic probing in that Θ(m2)
sequences are used rather than Θ(m) since every (h1(k), h2(k)) pair yields a dis-
tinct probe sequence, and the initial probe position, h1(k), and offset h2(k) vary
independently.

9012

Analysis of open addressing

Theorem.
Given an open address hash table with load factor α = n/m < 1, the expected num-
ber of probes in an unsuccessful search is at most 1

1−α, assuming simple uniform
hashing.

9013

Analysis of open addressing (2)

Proof. Define pi = Pr (exactly i probes access occupied slots) for i = 0, 1, 2, ...
(Note that for i > n, pi = 0). The expected number of probes is then 1 +

∑∞
i=0 i · pi .

Now define qi = Pr (at least i probes access occupied slots), then
∞
∑

i=0
i · pi =

∞
∑

i=1
qi

(why? (exercise)).

The probability that the first probes accesses an occupied slot is n
m, so q1 = n

m. A
second probe, if needed, will access one of the remaining m − 1 locations which
contain n − 1 possible keys, so q2 = n

m · n−1
m−1. Hence for i = 1, 2, ... , n

qi =
n

m
·

n − 1

m − 1
· · ·

n − i + 1

m − i + 1
≤

(n

m

)i
= αi .

Hence the following holds:

1 +
∞
∑

i=0
i · pi = 1 +

∞
∑

i=1
qi ≤ 1 + α + α2 + α3 + · · · =

1

1 − α
. �

9014

Analysis of open addressing

Hence, if the table is half full, at most 2 probes will be required on average, but if it
is 80% full, then on average up to 5 probes are needed.

Corollary. Inserting an item into an open-address hash table with load factor α

requires at most 1
1−α probes on average, assuming uniform hashing.

Proof. An insert operation amounts to an unsuccessful search followed by a place-
ment of the key in the first empty slot found. Thus, the expected number of probes
equals the one for unsuccessful search.

9015

Analysis of open addressing

Theorem. Given an open address hash table with load factor α = n/m < 1, the
expected number of probes in a successful search is at most 1

α ln 1
1−α, assuming

uniform hashing and assuming that each key in the table is equally likely to be
searched for.

9016

Analysis of open addressing (2)

Proof. A successful search has the same probe sequence as when the element
was inserted. Averaging this time over all elements yields:

1

n

n−1
∑

i=0

1

1 − i/m
=

1

n

n−1
∑

i=0

m

m − i

=
m

n

m
∑

i=m−n+1

1

i

≤
1

α

∫ m

m−n

1

x
dx

=
1

α
ln

m

m − n

=
1

α
ln

1

1 − α �

Hence, if the table is half full, the expected number of probes in a successful search
is 1

0.5 ln 1
0.5 = 1.387.

9017

Perfect Hashing

The ultimate combination of the the ideas presented above leads to perfect hashing.

In (static) perfect hashing we can achieve a worst case search time of O(1) while
using only O(n) space. This is achieved by a clever two step hashing scheme similar
to the double hashing scheme in open adressing.

The idea is as follows. One uses a first hash function to hash the n keys to a
table of size O(n), and then hashes all elements nj that are in the same table slot
to a secondary hash table of size O(n2

j). Allocating enough space this scheme
guarantees, that we can find in a constant number of steps a hash function without
collision while still using linear space.

This sounds too good to be true, but here is the argument:

9018

Perfect Hashing (2)

A table of size n2 makes it easy to find a perfect hash function.
Theorem 1. If we store n keys in a hash table of size m = n2 using a hash function
h randomly chosen from a universal class of hash functions, then the probability of
there being any collisions is less than 1/2.

Proof: There are
(

n
2

)

pairs that could collide, each with prob 1/m = 1/n2.

The probability of having at least one collision is bounded by the sum

of the probabilities of those collisions. Hence Pr (any collision) ≤
(

n
2

)

1
n2 =

n(n−1)
2n2 ≤ 1

2.

Hence we just need to repeatedly and randomly pick a hash function until we find
one without collisions. The expected number of times we need to test is a small
constant.

9019

Perfect Hashing (3)

What is the space consumption for the two way scheme? First, we use a table of
size n for the first universal hash function. Now let nj be the number of keys that
hash to bucket j , we will then allocate n2

j space for each bucket. Then we expect to
need space

E(
n−1
∑

j=0
n2

j) = E(
m−1
∑

j=0
nj) + 2E(

m−1
∑

j=0

(nj
2

)

)

= n + 2E(# collisions)

= n + 2
(n

2

) 1

m
≤ n + (n − 1) ≤ 2n

This is a rough argument. Making the odds higher and counting more precisely it is
convenient and works with 6n.

9020

Perfect Hashing (4)

The hash function used in perfect hashing is of the form hk (x) = (kx mod p) mod s,
where p is a prime. It was introduced and analyzed in the paper of Fredman,
Komlós, and Szemerédi in 1984. A proof that it is universal is similar to the one
conducted in the lecture.

We give now here an example of the two stage hashing scheme. Assume that
p = 31, n = 6 and S = {2, 4, 5, 15, 18}. We try out a number of hashfunctions
and find k = 2 sufficient, that means, the overall space consumption is linear. We
allocate for each table two slots more and store the value k and nj in the first two
positions.

This gives the following picture:

9021

Perfect Hashing (5)

In the example we show the primary table and the secondary tables which are
allocated in a consecutive piece of memory.

k

0 1 2 3 4 5 6

2 7 10 16 22

7 8 9| 10 11 12 13 14 15| 16 17 18 19 20 21| 22 23 24

1 1 4| 2 1 5 2 | 2 3 30 18| 1 1 15

n2 k2 | n4 k4 | n5 k5 | n6 k6

The query for 30 is processed as follows:

1. k = T [0] = 2, j = (30 · 2 mod 31) mod 6 = 5.

2. T [5] = 16, and from cells T [16] and T [17] we learn that block 5 has two ele-
ments and that k3 = 3

9022

3. (30 · 3 mod 31) mod 22 = 0. Hence we check the 0 + 2 = 2th cell of block 5 and
find that 30 is indeed present.

Perfect Hashing (6)

Mehlhorn et al showed that you can also use a simple doubling technique in con-
junction with static perfect hashing, such that you can construct a dynamic hash
table that support insertion, deletion and lookup time in expected, amortized time
O(1).

9023

