Mixed cycles

For a given choice of alignment edges we can efficiently check whether the connected components allow such a partial order by searching for a mixed cycle Z, which is a cycle in the extended alignment graph $G=(V, E, H)$:

A mixed cycle contains at least one arc $a \in H$ and hence at least two alignment edges $e, f \in E$.

Mixed cycles

A mixed cycle Z is called critical, if all nodes in $Z \cap a^{p}$ occur consecutively in Z, for all sequences $a^{p} \in A$. That is, the cycle enters and leaves each sequence at most once.

We have the following result:
Lemma. A subset $T \subseteq E$ is a trace, if and only if $G^{\prime}=(V, T, H)$ does not contain a critical mixed cycle.

Proof. Exercise.
Given edge weights for the alignment edges, we can reformulate the Maximum Weight Trace problem as follows:

Problem. Given an extended alignment graph $G=(V, E, H)$, find a subset $T \subseteq E$ with maximal weight such that $G=(V, T, H)$ does not contain a mixed cycle.

Integer LP for the MWT problem

How to encode the Maximum Weight Trace Problem problem as an integer LP?
Assume we are given an extended alignment graph $G=(V, E, H)$, with $E=$ $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$.

Each edge $e_{i} \in E$ is represented by a variable x_{i}, that will take on value 1 , if e_{i} belongs to the best scoring trace, and 0 , if not.

Hence, our variables are $x_{1}, x_{2}, \ldots, x_{n}$.
To ensure that the variables are binary, we add constraints $x_{i} \leq 1$ and $x_{i} \geq 0$ and require the x_{i} to be integer.

Additional inequalities must be added to prevent mixed cycles.

ILP for the MWT problem

For example, consider:

There are three possible critical mixed cycles in the graph, one using e_{1} and e_{3}, one using e_{2} and e_{3}, and one using e_{2} and e_{4}. We add the constraints

$$
\begin{aligned}
& x_{1}+x_{3} \leq 1 \\
& x_{2}+x_{3} \leq 1 \\
& x_{2}+x_{4} \leq 1
\end{aligned}
$$

to ensure that none of the critical mixed cycles is realized.

ILP for the MWT problem

For example, consider:

with three edges e_{1}, e_{2}, and e_{3} that all participate in a critical mixed cycle. The constraint

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

prevents them from being realized simutaneously.

ILP for the MWT problem

In summary, given an extended alignment graph $G=(V, E, H)$ with $E=$ $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, and a score ω_{i} defined for every edge edge $e_{i} \in E$.

We can obtain a solution to the MWT problem by solving the following ILP:

$$
\begin{array}{rlr}
\max & \sum_{e_{i} \in E} \omega_{i} x_{i} & \\
\text { subject to } & \sum_{e_{i} \in C \cap E} x_{i} \leq|C \cap E|-1 \quad \text { for all critical mixed cycles } C \\
& x_{i} \in\{0,1\} & \text { for all } i=1, \ldots, n
\end{array}
$$

Now we discuss an extension of this ILP formulation. [Remember: one advantage of ILPs is that problem variants/modifications can often be expressed quite easily.]

Block partition

Given a set of sequences $A=\left\{a^{1}, a^{2}, \ldots, a^{r}\right\}$. The complete alignment graph is usually too big to be useful.

Often, we are given a set of block matches between pairs of the sequences a^{p} and a^{q}, where a match relates a substring of a^{p} and a substring of a^{q} via a run of non-crossing edges (called a block), as shown here for two blocks D and D^{\prime} :

In the following, we will assume that the edges of the alignment graph $G=(V, E)$ were obtained from a set of matches, and we are given a partition of E into blocks. [Note that overlapping matches lead to a multigraph. Fortunately, this does not cause problems in our formulation.]

Generalized maximum trace problem

Given a partition \mathcal{D} of the edges of $G=(V, E)$ obtained from a set of matches. Then we require that for any given block $D \in \mathcal{D}$, either all edges in D are realized, or none. Each block D is assigned a positive weight $\omega(D)$.

Problem. Given an extended alignment graph $G=(V, E, H)$ and a partition \mathcal{D} of E into blocks with weights $\omega(D)$ for all $D \in \mathcal{D}$. The generalized maximum trace problem (GMT) is to determine a set $M \subseteq \mathcal{D}$ of maximum total weight such that the edges in $\bigcup D$ do not induce a mixed cycle on G.

$$
D \in M
$$

Instead of having a variable for every edge in an extended alignment graph, we now have a variable for every set of the partition \mathcal{D}.

Otherwise the ILP remains the same.

ILP for the GMT

We define a surjective function $v: E \rightarrow \mathcal{D}$, which maps each edge $e \in E$ to the block $d \in \mathcal{D}$ in which e is contained and define

$$
v(X)=\bigcup_{e \in X} v(e) \quad \text { for } X \subseteq E .
$$

It is now easy to formulate GMT as an integer linear program. For every $d \in \mathcal{D}$ we have a binary variable $x_{d} \in\{0,1\}$ indicating whether d is in the solution or not. Then the GMT-problem can be written as:
$\max \sum_{d \in \mathcal{D}} \omega_{d} \cdot x_{d}$
s.t. $\quad \sum_{d \in v(C \cap E)} x_{d} \leq|v(C \cap E)|-1 \quad \forall$ critical mixed cycles C in G

$$
x_{d} \in\{0,1\} \quad \forall d \in \mathcal{D}
$$

