Combinatorial Optimization and Integer Linear Programming

Combinatorial Optimization: Introduction

Many problems arising in practical applications have a special, *discrete* and *finite*, nature:

Definition. (Linear Combinatorial Optimization Problem)
Given

- a finite set E (the ground set),
- a subset $\mathcal{F} \subseteq 2^E$ (the set of feasible solutions),
- a cost function $c: E \to \mathbb{R}$,

find a set $F^* \in \mathcal{F}$ such that

$$c(F^*) := \sum_{e \in F^*} c(e)$$

is maximal or minimal.

Examples: Shortest Path, Traveling Salesman, and many many more...

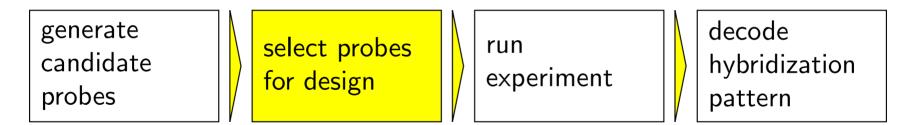
Just in bioinformatics: Alignments, Threading, Clone-Probe Mapping, Probe Selection, *De Novo* Peptide Sequencing, Side-Chain Placement, Maximum-weight Connected Subgraph in PPI Networks, Genome Rearrangements, Cluster Editing, Finding Regulatory Modules, Finding Approximate Gene Clusters, and many more...

3001

Example. Optimal Microarray Probe Selection

Experimental setup (group testing):

- Goal: determine presence of targets in sample
- probes hybridize with targets → hybridization pattern



Selection phase:

- unique probes are easy to decode but difficult to find (similarities, errors, add. constraints, . . .)
- → consider non-unique probes
- Task: choose few probes that still allow to infer which targets are in the sample

(3)

Example hybridization matrix $(H)_{ij}$:

	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9
$\overline{t_1}$	1	1	1	0	1	1	0	0	0
t_2	1	0	1	1	0	0	1	1	0
t_3	0	1	1	1	0	1	1	0	1
t_4	1 0 0	1	0	0	1	0	1	1	1

Assume: no errors, only one target present in sample

Example hybridization matrix $(H)_{ij}$:

	p_1	p_2	p_3	$\mid p_4 \mid$	p_5	p_6	p_7	p_8	p_9
$\overline{t_1}$	1	1	1	0	1	1	0	0	0
t_2	1	0	1	1	0	0	1	1	0
t_3	0	1	1	1	0	1	1	0	1
t_4	1 1 0 0	1	0	0	1	0	1	1	1

Assume: no errors, only one target present in sample

Example hybridization matrix $(H)_{ij}$:

	p_1	p_2	p_3	$\mid p_4 \mid$	p_5	p_6	p_7	p_8	p_9
t_1	1	1	1	0	1	1	0	0	0
t_2	1	0	1	1	0	0	1	1	0
t_3	0	1	1	1	0	1	1	0	1
t_4	1 1 0 0	1	0	0	1	0	1	1	1

Assume: no errors, two targets present, e.g., t_2 and t_3

Example hybridization matrix $(H)_{ij}$:

							p_7		
t_1	1	1	1	0	1	1	0	0	0
t_2	1	0	1	1	0	0	1	1	0
t_3	0	1	1	1	0	1	1	0	1
$t_4 \Big $	0	1	0	0	1	0	0 1 1 1	1	1

Assume: no errors, two targets present, e.g., t_2 and t_3

Combinatorial Optimization: Introduction

We want to solve the following problem.

Definition. Probe Selection Problem (PSP)

- ullet Given an incidence matrix H, $d\in\mathbb{N}$, and $c\in\mathbb{N}$,
- find the smallest subset $D \subseteq N$, such that
 - ▶ all targets are covered by at least d probes
 - □ all different subsets of targets S and T up to cardinality c are d-separable
 with respect to D

Observation. PSP is a combinatorial optimization problem, because

- ground set = candidate probes, i.e., $E := \{1, 2, ..., n\}$.
- feasible solutions = feasible designs, i.e.,

 $\mathcal{F} := \{ D \in 2^E \mid D \text{ satisfies coverage and separation constraints} \}$

all costs c(e) := 1.

More examples. What about

$$\min\{3x^2+2\mid x\in\mathbb{R}\}\ ?$$

Or

max
$$2x_1 + 3x_2$$

s.t. $x_1 + 2x_2 \le 3$
 $3x_1 - x_2 \le 5$
 $x_1, x_2 \in \mathbb{N}$?

Interesting combinatorial problems have an exponential number of feasible solutions. [Otherwise, a straightforward polynomial-time algorithm finds optimal solutions.]

Combinatorial optimization: find solutions faster than by complete enumeration.

Combinatorial Optimization

(9)

Now, given a combinatorial optimization problem $C = (E, \mathcal{F}, c)$, we define, for each feasible solution $F \in \mathcal{F}$, its *characteristic vector* $\chi^F \in \{0, 1\}^E$ as

$$\chi_e^F := \begin{cases} 1 & e \in F \\ 0 & \text{otherwise} \end{cases}$$
.

Then, assuming the objective is to maximize, *C* can be seen as maximizing over a polytope, i. e.,

$$\max\{c^Tx\mid x\in \operatorname{conv}\left\{\chi^F\in\{0,1\}^E\mid F\in\mathcal{F}\right\}$$
.

Why polytope?

Theorem. (Minkowski 1896, Weyl 1935)

Each polytope $P = \{x \in \mathbb{R}^n \mid Ax \le b, l \le x \le u\}$ can be written as

$$P = conv(V)$$

where V is a finite subset of \mathbb{R}^n and vice versa.

Combinatorial Optimization

(10)

It is possible to switch between these descriptions as \mathcal{H} -polytope (halfspaces) and \mathcal{V} -polytope (vertices) with the Fourier-Motzkin elimination method.

Example.

Consider the V-polytope defined by

$$P = \operatorname{conv} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

End (Example).

So, we can just compute the \mathcal{H} -polytope $\{x \in \mathbb{R}^n \mid Ax \leq b\}$ for C and optimize over it using, e.g., the Simplex method?

Unfortunately, it is not so easy:

- In general, we cannot find A and b in polynomial time.
- The size of A and b might be exponential.
- The coefficients in A and b can be exponentially large.

Combinatorial Optimization

(11)

A little bit of light... often, finding an *integer linear programming (ILP) formulation* is easier:

$$\max\{c'^Tx'\mid A'x'\leq b, x'\in\mathbb{Z}\}$$
.

But: solving LPs is easy, solving ILPs is not!