Solving the MWT

Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving
the following ILP:

max >  wiX

eieE

subject to Y x<|CNnE|-1 for all critical mixed cycles C
e;cCNE
X; € {0,1} foralli=1,..,n

We showed before that this ILP describes the solution to the Maximum Weight Trace
problem. The first step is to have a closer look at the MWT-polytope.
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Solving the MWT )

Let 7 :={T C E | T isatrace} be the set of all feasible solutions. We define the
MWT polytope as the convex hull of all incidence vectors of E that are feasible, i. e.,

P+(G) = COI‘]V{XT € {0, 1}|E| | TeT},

where the incidence vector x! for a subset T C E is defined by setting Xe = 11if
e € E and setting xe =0ife ¢ E.

We have a closer look at the facial structure of the polytope, that means we try
to identify facet-defining classes of inequalities. The following theorem is our main
tool.
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|dentifying facet-defining classes of polytope

Theorem. Let P C QY be a full dimensional polyhedron. If F is a (nonempty) face
of P then the following assertions are equivalent.

1. F is a facet of P.
2. dim(F) = dim(P) — 1, where dim(P) is the maximum number of affinely inde-

pendent points in P minus one.
3. There exists a valid inequality cTx < ¢ with respect to P with the following
three properties:
(a) F={x€P|cTx =cgy}
(b) There exists a vector X € P such thatc'x < Co-
(c) IfaTx < agis a valid inequality for P suchthatF C F = {x € P | a'x = ag}
then there exists a number A € Q such thata’ =X -cT andag = X - cp.
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ldentifying facet-defining classes of polytope @

Assertions |2 and 3| provide the two basic methods to prove that a given inequality
¢’ x < cq is facet-defining for a polyhedron P.

The first method (Assertion 2), called the direct method, consists of exhibiting a set
of d = dim(P) vectors X1, ..., Xq satisfying CTXi = cg and showing that these vectors
are affinely independent.

The indirect method (Assertion [3) is the following: We assume that
{x|cTx=co} C {x|a'x =ag}

for some valid inequality a' x < ag and prove that there exists a A > 0 such that
al =X-clandag=\-cp
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Cligue inequalities

Now we describe a class of valid, facet-defining inequalities for the MWT problem,

focusing first on the pairwise case. In the case of two sequences, consider the
following extended alignment graph:

L2

This gives rise to the following set of inequalities:

X1 +Xo <1, X1 +X3 <1 Xo+Xx3<1

However, it is clear that only one of the three edges can be realized by an alignment.

Hence, inequality X, + X + X3 < 1 is valid and more stringent. Indeed it cuts off the
fractional solution x; = X, = X3 = 3.
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Cligue inequalities ¢

If C C E is a set of alignment edges such that each pair forms a mixed cycle, it is
called a clique (since it forms a clique in the conflict graph).

The conflict graph of a combinatorial optimization problem has a node for each
object and an edge between pairs of conflicting objects). In general the clique in-
equalities

EE:IXe <1
are valid for the MWT problem.
Are they also facet-defining for the MWT polytope?

Theorem.
Let C C E be a maximal cligue. Then the inequality Z Xe < 1 is facet-defining for

ecC
Pr(G).
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Cligue inequalities

Proof.
We choose the direct way, which means we have to find n affinely independent

vectors satisfying Z Xe = 1. This can be easily achieved. Assume without loss

ecC
of generality that |E \ C| # @. We first construct |C| many solutions by choosing a

single edge in C.

Then for each edge e ¢ C there must be an edge f € C which does not form a
mixed cycle with e (otherwise C is not maximal). Hence we can construct as set of
solutions {e,f}, Ve € C. This means we have for all n edges a solution satisfying
the cligue inequality with equality, and they are clearly affinely independent.

3006



Cligue inequalities 4

But how do we efficiently find violated clique inequalities? How do we solve the
separation problem? We define the following relation on edges:

Definition.
Let Kp,q be the complete bipartite graph with nodes X4, ..., Xp and yq, ..., yq. Define
the strict partial order ‘<’ on the edges of Kp g as follows:

e = (x;,Y)) < f =X iff
(i>kandj <Dor(i=kandj <]I).
Observe that for two sequences the alignment graph (V, E) is a subgraph of Kp g

and that two edges e and f form a mixed cycle in the input graph iff eithere < f or
f <e.
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Cligue inequalities ¢

Definition.
Let PG(Kp,q) be the p x q directed grid graph with arcs going from right to left

and from bottom to top. Row r, 1 < r < p of PG(Kp,q) contains g nodes which
correspond from left to right to the g edges that go between node x,_+; and node
Y1, ..., Yq In Kp,q. We call PG(Kp,q) the pairgraph of Kp,q and we call a node of the
pairgraph essential if it corresponds to an edge in E.

5 4 4 D 6
1 2 3
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Cligue inequalities )

The graph PG(Kp,q) has exactly one source and one sink and there is a path from
node n, to node nq in PG(Kp,q) iff e < e, for the corresponding edges €1, €5 Iin

Kp’q

Lemma.

Let P = nq, ..., Np+q be a source-to-sink path in PG(Kp,q) and leteq, ..., e, | < p+q,
be the edges in E that correspond to essential nodes in P. Then eq, ..., e is a clique
of the input extended alignment graph if | > 2. Moreover, every maximal clique in
the input extended alignment graph can be obtained in this way.
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Cligue inequalities ¢

Proof.
For any two nodes n; and n; in PG(Kp,q) with i > | the corresponding edges e; and

ej are in relation e; < e; and hence form a mixed cycle in G. Thus {eq,...,e/} isa
cligue of G. Conversely, the set of edges in any clique C of G is linearly ordered by
< and hence all maximal cliques are induced by source-to-sink paths in PG(Kp,q).
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Cligue inequalities )

We can now very easily use the pairgraphs for each pair of sequences to separate
the clique inequalities.

Assume the solution x of the current LP-relaxation is fractional. Our problem is to
find a cligue C which violates the clique inequality

> xe<1.

ecCnNE
Assign the cost Xe to each essential node ve in PG(Kp,q) (essential nodes are the
nodes that correspond to the edges in E) and 0 to non-essential nodes.
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Cligue inequalities

Then compute the longest source-to-sink path C in PG(Kp,q). If the cost of C is
greater than 1, i.e.,

we have found a violated cligue inequality.

Since PG(Kp,q) Is acyclic, such a path can be found in polynomial time.

[Caution: We will not go deeper into this, but it is necessary to make a sparse version of the PG in
the case of a non-complete bipartite graph. This has to be done such that its size ist still polynomial
and each path encodes a maximal clique. Nevertheless, the trick with essential and non-essential

nodes will work and leads to correct separation results.]
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Mixed cycle inequalities (10)

Now we describe how to solve the separation problem for the mixed-cycle inequali-
ties. Assume the solution x of the linear program is fractional.

First assign the cost 1 — Xe to each edge e € E and O to alla € H. Then we
compute for each node sjj, 1 <1 < k, 1 <] < nj the shortest path from s; ;4 to
sj j- If there Is such a shortest path P, and its cost is less than 1, i.e.,

Z(l—ie)<1 ,

ecP
we have found a violated inequality, namely

Y %e>|P| -1,
ecP

since P together with the arc (s; j, Sj j+1) forms a mixed cycle.
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