
Solving the MWT

Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving
the following ILP:

max
∑

ei∈E
ωixi

subject to
∑

ei∈C∩E
xi ≤ |C ∩ E | − 1 for all critical mixed cycles C

xi ∈ {0, 1} for all i = 1, ... , n

We showed before that this ILP describes the solution to the Maximum Weight Trace
problem. The first step is to have a closer look at the MWT-polytope.
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Solving the MWT (2)

Let T := {T ⊆ E | T is a trace} be the set of all feasible solutions. We define the
MWT polytope as the convex hull of all incidence vectors of E that are feasible, i. e.,

PT (G) := conv{χT ∈ {0, 1}|E | | T ∈ T } ,

where the incidence vector χT for a subset T ⊆ E is defined by setting χT
e = 1 if

e ∈ E and setting χT
e = 0 if e /∈ E .

We have a closer look at the facial structure of the polytope, that means we try
to identify facet-defining classes of inequalities. The following theorem is our main
tool.
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Identifying facet-defining classes of polytope

Theorem. Let P ⊆ Qd be a full dimensional polyhedron. If F is a (nonempty) face
of P then the following assertions are equivalent.

1. F is a facet of P.
2. dim(F ) = dim(P) − 1, where dim(P) is the maximum number of affinely inde-

pendent points in P minus one.
3. There exists a valid inequality cT x ≤ c0 with respect to P with the following

three properties:
(a) F = {x ∈ P | cT x = c0}
(b) There exists a vector x̂ ∈ P such that cT x̂ < c0.
(c) If aT x ≤ a0 is a valid inequality for P such that F ⊆ F̄ = {x ∈ P | aT x = a0}

then there exists a number λ ∈ Q such that aT = λ · cT and a0 = λ · c0.
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Identifying facet-defining classes of polytope (2)

Assertions 2 and 3 provide the two basic methods to prove that a given inequality
cT x ≤ c0 is facet-defining for a polyhedron P.

The first method (Assertion 2), called the direct method, consists of exhibiting a set
of d = dim(P) vectors x1, ... , xd satisfying cT xi = c0 and showing that these vectors
are affinely independent.

The indirect method (Assertion 3) is the following: We assume that

{x | cT x = c0} ⊆ {x | aT x = a0}

for some valid inequality aT x ≤ a0 and prove that there exists a λ > 0 such that
aT = λ · cT and a0 = λ · c0.
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Clique inequalities

Now we describe a class of valid, facet-defining inequalities for the MWT problem,
focusing first on the pairwise case. In the case of two sequences, consider the
following extended alignment graph:

x1

x2

x3

This gives rise to the following set of inequalities:

x1 + x2 ≤ 1, x1 + x3 ≤ 1, x2 + x3 ≤ 1

However, it is clear that only one of the three edges can be realized by an alignment.
Hence, inequality x1 + x2 + x3 ≤ 1 is valid and more stringent. Indeed it cuts off the
fractional solution x1 = x2 = x3 = 1

2.
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Clique inequalities (2)

If C ⊆ E is a set of alignment edges such that each pair forms a mixed cycle, it is
called a clique (since it forms a clique in the conflict graph).

The conflict graph of a combinatorial optimization problem has a node for each
object and an edge between pairs of conflicting objects). In general the clique in-
equalities ∑

e∈C
xe ≤ 1

are valid for the MWT problem.

Are they also facet-defining for the MWT polytope?

Theorem.
Let C ⊆ E be a maximal clique. Then the inequality

∑
e∈C

xe ≤ 1 is facet-defining for

PT (G).
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Clique inequalities (3)

Proof.
We choose the direct way, which means we have to find n affinely independent
vectors satisfying

∑
e∈C

xe = 1. This can be easily achieved. Assume without loss

of generality that |E \ C| 6= ∅. We first construct |C| many solutions by choosing a
single edge in C.

Then for each edge e /∈ C there must be an edge f ∈ C which does not form a
mixed cycle with e (otherwise C is not maximal). Hence we can construct as set of
solutions {e, f}, ∀e /∈ C. This means we have for all n edges a solution satisfying
the clique inequality with equality, and they are clearly affinely independent.

3006



Clique inequalities (4)

But how do we efficiently find violated clique inequalities? How do we solve the
separation problem? We define the following relation on edges:

Definition.
Let Kp,q be the complete bipartite graph with nodes x1, ... , xp and y1, ... , yq. Define
the strict partial order ‘≺’ on the edges of Kp,q as follows:

e = (xi , yj) ≺ f = (xk , yl) iff

(i > k and j ≤ l) or (i = k and j < l).

Observe that for two sequences the alignment graph (V , E) is a subgraph of Kp,q

and that two edges e and f form a mixed cycle in the input graph iff either e ≺ f or
f ≺ e.
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Clique inequalities (5)

Definition.
Let PG(Kp,q) be the p × q directed grid graph with arcs going from right to left
and from bottom to top. Row r , 1 ≤ r ≤ p of PG(Kp,q) contains q nodes which
correspond from left to right to the q edges that go between node xp−r+1 and node
y1, ... , yq in Kp,q. We call PG(Kp,q) the pairgraph of Kp,q and we call a node of the
pairgraph essential if it corresponds to an edge in E .

1

1 2
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5 6
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2 3

4 5 6
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Clique inequalities (6)

The graph PG(Kp,q) has exactly one source and one sink and there is a path from
node n2 to node n1 in PG(Kp,q) iff e1 ≺ e2 for the corresponding edges e1, e2 in
Kp,q.

Lemma.
Let P = n1, ... , np+q be a source-to-sink path in PG(Kp,q) and let e1, ... , el , l ≤ p +q,
be the edges in E that correspond to essential nodes in P. Then e1, ... , el is a clique
of the input extended alignment graph if l ≥ 2. Moreover, every maximal clique in
the input extended alignment graph can be obtained in this way.
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Clique inequalities (7)

Proof.
For any two nodes ni and nj in PG(Kp,q) with i > j the corresponding edges ei and
ej are in relation ei ≺ ej and hence form a mixed cycle in G. Thus {e1, ... , el} is a
clique of G. Conversely, the set of edges in any clique C of G is linearly ordered by
≺ and hence all maximal cliques are induced by source-to-sink paths in PG(Kp,q).
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Clique inequalities (8)

We can now very easily use the pairgraphs for each pair of sequences to separate
the clique inequalities.

Assume the solution x̄ of the current LP-relaxation is fractional. Our problem is to
find a clique C which violates the clique inequality∑

e∈C∩E
x̄e ≤ 1 .

Assign the cost x̄e to each essential node ve in PG(Kp,q) (essential nodes are the
nodes that correspond to the edges in E) and 0 to non-essential nodes.
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Clique inequalities (9)

Then compute the longest source-to-sink path C in PG(Kp,q). If the cost of C is
greater than 1, i.e., ∑

e∈C∩E
x̄e > 1

we have found a violated clique inequality.

Since PG(Kp,q) is acyclic, such a path can be found in polynomial time.

[Caution: We will not go deeper into this, but it is necessary to make a sparse version of the PG in

the case of a non-complete bipartite graph. This has to be done such that its size ist still polynomial

and each path encodes a maximal clique. Nevertheless, the trick with essential and non-essential

nodes will work and leads to correct separation results.]
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Mixed cycle inequalities (10)

Now we describe how to solve the separation problem for the mixed-cycle inequali-
ties. Assume the solution x̄ of the linear program is fractional.

First assign the cost 1 − x̄e to each edge e ∈ E and 0 to all a ∈ H. Then we
compute for each node si ,j , 1 ≤ i ≤ k , 1 ≤ j < ni the shortest path from si ,j+1 to
si ,j . If there is such a shortest path P, and its cost is less than 1, i.e.,∑

e∈P
(1 − x̄e) < 1 ,

we have found a violated inequality, namely∑
e∈P

x̄e > |P| − 1 ,

since P together with the arc (si ,j , si ,j+1) forms a mixed cycle.

3013


