Constraint Programming

Constraint Programming

- Basic idea: Programming with constraints, i.e. constraint solving embedded in a programming language
- Constraints: linear, non-linear, finite domain, Boolean, . . .
- Programming: logic, functional, object-oriented, imperative, concurrent, . . .
- Systems: Prolog III/IV, CHIP, ECLIPSE, ILOG, OCRE, NCL, . . .

Finite Domain Constraints

Constraint satisfaction problem (CSP)

- n variables x₁, ..., x_n
- For each variable x_j a finite domain D_j of possible values, often $D_j \subset \mathbb{N}$.
- m constraints C_1, \ldots, C_m , where $C_i \subseteq D_{i_1} \times \ldots \times D_{i_{k_i}}$ is a relation between k_i variables $x_{i_1}, \ldots, x_{i_{k_i}}$. Write also $C_{i_1, \ldots, i_{k_i}}$.
- A solution is an assignment of a value D_j to x_j , for each j = 1, ..., n, such that all relations C_i are satisfied.

Coloring Problem

- Decide whether a map can be colored by 3 colors such that neighboring regions get different colors.
- For each region a variable x_i with domain $D_i = \{\text{red, green, blue}\}$.
- For each pair of variables x_i , x_j corresponding to two neighboring regions, a constraint $x_i \neq x_j$.
- NP-complete problem.

Resolution by Backtracking

- Instantiate the variables in some order.
- As soon as all variables in a constraint are instantiated, determine its truth value.
- If the constraint is not satisfied, backtrack to the last variable whose domain contains unassigned values, otherwise continue instantiation.

Efficiency Problems

Mackworth 77

- 1. If the domain D_j of a variable x_j contains a value v that does not satisfy C_j , this will be the cause of repeated instantiation followed by immediate failure.
- 2. If we instantiate the variables in the order $x_1, x_2, ..., x_n$, and for $x_j = v$ there is no value $w \in D_j$, for j > i, such that $C_{ij}(v, w)$ is satisfied, then backtracking will try all values for x_j , fail and try all values for x_{j-1} (and for each value of x_{j-1} again all values for x_j), and so on until it tries all combinations of values for $x_{j+1}, ..., x_j$ before finally discovering that v is not a possible value for x_j .

The identical failure process may be repeated for all other sets of values for $x_1, ..., x_{i-1}$ with $x_i = v$.

Local Consistency

- Consider CSP with unary and binary constraints only.
- Constraint graph G
 - \triangleright For each variable x_i a node i.
 - For each pair of variables x_i , x_j occurring in the same binary constraint, two arcs (i, j) and (j, i).
- The node *i* is consistent if $C_i(v)$, for all $v \in D_i$.
- The arc (i, j) is consistent, if for all $v \in D_i$ with $C_i(v)$ there exists $w \in D_j$ with $C_i(w)$ such that $C_{ii}(v, w)$.
- The graph is node consistent resp. arc consistent if all its nodes (resp. arcs) are consistent.

Arc Consistency

```
Algorithm AC-3 (Mackworth 77):
begin
    for i \leftarrow 1 until n do D_i \leftarrow \{v \in D_i \mid C_i(v)\};
    Q \leftarrow \{(i,j) \mid (i,j) \in arcs(G), i \neq j\}
    while Q not empty do
        begin
            select and delete an arc (i, j) from Q;
             if REVISE(i,j) then
                     Q \leftarrow Q \cup \{(k, i) \mid (k, i) \in arcs(G), k \neq i, k \neq j\}
        end
end
```

Arc Consistency

(2)

```
procedure REVISE(i,j):
begin
   DELETE \leftarrow false
   for each v \in D_i do
      if there is no w \in D_j such that C_{ij}(v,w) then
          begin
             delete V from D_i;
             DELETE ← true
          end;
   return DELETE
end
```

Crossword Puzzle

Dechter 92

Word List

Aft	Laser
Ale	Lee
Eel	Line
Heel	Sails
Hike	Sheet
Hoses	Steer
Keel	Tie
Knot	

Solution

Lookahead

Apply local consistency dynamically during search

- Forward Checking: After assigning to x the value v, eliminate for all uninstantiated variables y the values from D_V that are incompatible with v.
- Partial Lookahead: Establish arc consistency for all (y, y'), where y, y' have not been instantiated yet and y will be instantiated before y'.
- Full Lookahead: Establish arc consistency for all uninstantiated variables.

n-Queens Problem

Place n queens in an $n \times n$ chessboard such that no two queens threaten each other.

Variables x_i , i = 1, ..., n with domain $D_i = \{1, ..., n\}$ indicating the column of the queen in line i.

Constraints

- \triangleright $x_i \neq x_j$, for $1 \leq i < j \leq n$ (vertical)
- \triangleright $x_i \neq x_j + (j i)$, for $1 \leq i < j \leq n$ (diagonal 1)
- $\triangleright x_i \neq x_i (j-i)$, for $1 \leq i < j \leq n$ (diagonal 2)

Forward Checking

(2)

	Α	В	С	D	Ε	F	G	Н	
1	Q								4.0
2	X	X	0						1.4
3	X	×	X	×	Q				
4	X	Q	X	X	X	X			
5	X	X	X		X	X	x		
6	X	X	X	X	Х	X	X	X	
7	X	X	X		X		X	X	
8	X	X	X		Х	X		X	

```
2C
  3E
    4BG
        5B
          6D
        5D
    4H
        5B
          6D
             7F
          6 (no more value)
        5D
    4 (no more value)
  3F
```

Partial Lookahead

(3)

	Α	В	С	D	Е	F	G	Н
1	Q							
2	×	X	8					
3	X	×	X	X	Ø			
4	×	0	*	X	×	X		
5	X		X	0	X	X	X	
6	×	X	*		×	X	X	X
7	X		X		X		X	X
8	X		X		X			X

1A
2C
3E (delete 4B and 5D)
4GH
5B (no value left for 6)
3F (delete 6D and 6E)
4BH (failed, backtrack to 4)
3G (delete 5D and 7E)
4B

Full Lookahead (4)

	Α	В	С	D	Ε	F	G	Н	
1	Q								
2	X	X	C						
3	X	×	X	×	Q				1A 2C
4	X	0	X	X	X	X			3E 3F 3G
5	X		X	0	X	×	X		3H 2D
6	X	X	X		X	X	×	X	3B 3F
7	X		X	0	X		X	×	
8	X	0	X	0	X	0		X	No value for queen 6

Typical structure of a constraint program

- Declare the variables and their domains
- State the constraints
- Enumeration (labeling)

The constraint solver achieves only local consistency.

In order to get global consistency, the domains have to be enumerated.

Labeling

 Assigning to the variables their possible values and constructing the corresponding search tree.

Important questions

- 1. In which order should the variables be instantiated (variable selection)?
- 2. In which order should the values be assigned to a selected variable (value selection)?
- Static vs. dynamic orderings
- Heuristics

Dynamic variable/value orderings

Variable orderings

- Choose the variable with the smallest domain "first fail"
- Choose the variable which has the smallest/largest lower/upper bound on its domain.

Value orderings

- Try first the minimal value in the current domain.
- Try first the maximal value in the current domain.
- Try first some value in the middle of the current domain.

Constraint programming systems

System	Avail.	Constraints	Language	Web site
B-prolog	comm.	FinDom	Prolog	www.probp.com
CHIP	comm.	FinDom,	Prolog,	www.cosytec.com
		Boolean,	C, C++	
		Linear Q		
		Hybrid		
Choco	free	FinDom	Claire	choco-constraints.net
Eclipse	free non-	FinDom,	Prolog	www.icparc.ic.ac.uk/
	profit	Hybrid		eclipse/
GNU Prolog	free	FinDom	Prolog	gnu-prolog.inria.fr
IF/Prolog	comm.	FinDom	Prolog	www.ifcomputer.co.jp
		Boolean,		
		Linear $\mathbb R$		
ILOG	comm.	FinDom,	C++,	www.ilog.com
		Hybrid	Java	
NCL	comm.	FinDom		www.enginest.com
Mozart	free	FinDom	Oz	www.mozart-oz.org
Prolog IV	comm.	FinDom,	Prolog	www.prologia.fr
		nonlinear		
		intervals		
Sicstus	comm.	FinDom,	Prolog	www.sics.se/sicstus/
		Boolean,		
		linear \mathbb{R}/\mathbb{Q}		

Integer vs. constraint programming

Practical Problem Solving

Model building : Language

Model solving : Algorithms

IP vs. CP: Language

	IP	СР
Variables	0-1	Finite domain
Constraints	Linear equations	Arithmetic constraints
	and inequalities	Symbolic/global constraints

Example

● Variables : $x_1, ..., x_n \in \{0, ..., m-1\}$

Constraint : Pairwise different values

Example

(2)

Integer programming: Only linear equations and inequalities

$$x_i \neq x_j \iff x_i < x_j \lor x_i > x_j$$
 $\iff x_i \leq x_j - 1 \lor x_i \geq x_j + 1$

Eliminating disjunction

$$x_i - x_j + 1 \le my_i$$
, $x_j - x_i + 1 \le my_j$, $y_i + y_j = 1$, $y_i, y_j \in \{0, 1\}$, $0 \le x_i, x_j \le m - 1$,

• New variables: $z_{ik} = 1$ iff $x_i = k$, i = 1, ..., n, k = 0, ..., m - 1

$$z_{i0} + \cdots + z_{im-1} = 1$$
, $z_{1k} + \cdots + z_{nk} \le 1$,

Constraint programming - symbolic constraint

all different
$$(x_1, ..., x_n)$$

Symbolic/global constraints

- alldifferent($[x_1, ..., x_n]$)
- cumulative($[s_1, ..., s_n], [d_1, ..., d_n], [r_1, ..., r_n], c, e$).
 - \triangleright n tasks: starting time s_i , duration d_i , resource demand r_i
 - resource capacity c, completion time e.

Diffn Constraint

Beldiceanu/Contejean'94

- Nonoverlapping of n-dimensional rectangles $[O_1, ..., O_n, L_1, ..., L_n]$, where O_i resp. L_i denotes the origin resp. length in dimension i
- diffn($[[O_{11}, ..., O_{1n}, L_{11}, ..., L_{1n}], ..., [O_{m1}, ..., O_{mn}, L_{m1}, ..., L_{mn}]]$)

General form: diffn(Rectangles, Min_Vol, Max_Vol, End, Distances, Regions)

IP vs. CP : Algorithms

	IP	СР
Inference	Linear programming	Domain filtering
	Cutting planes	Constraint propagation
Search	Branch-and-relax	Branch-and-bound
	Branch-and-cut	
Bounds on	Two-sided	One-sided
the objective		
function		

Local vs. global reasoning

Linear arithmetic constraints

$$3x + y \le 7,$$

 $3y + x \le 7,$
 $x + y = z,$
 $x, y \in \{0, ..., 3\}$

CP
$$x, y \le 2, z \le 4$$

LP $x, y \le 2, z \le 3.5$
IP $x, y \le 2, z \le 3$

Global reasoning in CP ? → global constraints!

Global reasoning in CP

Example

- $x_1, x_2, x_3 \in \{0, 1\}$
- pairwise different values
- Local consistency : 3 disequalities : $x_1 \neq x_2$, $x_1 \neq x_3$, $x_2 \neq x_3$ $\rightsquigarrow x_1, x_2, x_3 \in \{0, 1\}$, i.e., no domain reduction is possible

Global reasoning in CP: inside global constraints

Summary

	ILP	CP(FD)
Language	Linear arithmetic	Arithmetic constraints
	_	Symbolic constraints
	Global consistency (LP)	Local consistency
Algorithms	Cutting planes	Domain reduction
	Branch-and-bound	User-defined enumeration
	Branch-and-cut	

- Symbolic constraints ~> more expressivity + more efficiency
- Unifying framework for CP and IP: Branch-and-infer (Bockmayr/Kasper 98)

Discrete Tomography

- Binary matrix with m rows and n columns
 - ▶ Horizontal projection numbers $(h_1, ..., h_m)$
 - \triangleright Vertical projection numbers $(v_1, ..., v_n)$
- Properties
 - Horizontal convexity (h)
 - Vertical convexity (v)
 - Connectivity (polyomino) (p)

- Complexity (Woeginger'01)
 - polynomial: (), (p,v,h)
 - NP-complete: (p,v), (p,h), (v,h), (v), (h), (p)

IP Model

- Variables $x_{ij} = \begin{cases} 0 & \text{cell(i,j) is labeled white} \\ 1 & \text{cell(i,j) is labeled black} \end{cases}$
- Constraints I: Projections

$$\sum_{j=1}^{n} x_{ij} = h_i, \qquad \sum_{i=1}^{m} x_{ij} = v_j$$

Constraints II: Convexity

$$h_i x_{ik} + \sum_{l=k+h_i}^n x_{il} \le h_i, \qquad v_j x_{kj} + \sum_{l=k+v_i}^m x_{lj} \le v_j,$$

IP Model (contd)

Constraints III: Connectivity

$$\sum_{k=j}^{j+h_{i}-1} x_{ik} - \sum_{k=j}^{j+h_{i}-1} x_{(i+1)k} \le h_{i} - 1$$

$$x_{i,2}$$

$$h_{i} = 4$$

$$h_{i+1} = 3$$

- Various linear arithmetic models possible, e.g. convexity
- Enormous differences in size and running time, e.g. 1 day vs. < 1 sec</p>
- Large number of constraints ($\sim 3mn$ in the above model)

Finite Domain Model

Variables

- \triangleright x_i start of horizontal convex block in row i, for $1 \le i \le m$
- $\bigvee_{i \in \mathcal{Y}_j} \text{ start of vertical convex block in column } j, \text{ for } 1 \leq j \leq n$

Domain

$$x_i \in [1, ..., n - h_i + 1], \text{ for } 1 \le i \le m$$

$$y_j \in [1, ..., m - v_j + 1],$$
for $1 \le j \le n$

Conditional Propagation

- Projection/Convexity modelled by FD variables
- Compatibility of x_i and y_i

$$x_i \le j < x_i + h_i \iff y_j \le i < y_j + v_j$$

for $1 \le i \le m$ and $1 \le j \le n$

Conditional propagation

if
$$x_i \leq j$$
 then (if $j < x_i + h_i$ then $(y_j \leq i, i < y_j + v_j)$)

Finite Domain Model (contd)

Connectivity

Block i must start before the end of block i + 1

$$x_i \le x_{i+1} + h_{i+1} - 1$$
, for $1 \le i \le m - 1$

Block i + 1 must start before the end of block i

$$x_{i+1} \le x_i + h_i - 1$$
, for $1 \le i \le m - 1$

Cumulative

2d and 3d Diffn Model

