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Constraint Programming

Basic idea: Programming with constraints, i.e. constraint solving embedded in
a programming language

Constraints: linear, non-linear, finite domain, Boolean, . ..
Programming: logic, functional, object-oriented, imperative, concurrent, . ..

Systems: Prolog IlII/1V, CHIP, ECLIPSE, ILOG, OCRE, NCL, ...
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Finite Domain Constraints

Constraint satisfaction problem (CSP)
e n variables xq, ..., Xn
e For each variable x; a finite domain D; of possible values, often D; C N.

e m constraints Cy,...,Cm, where C; C Dj, x ... X Dj Is a relation between k;
|

variables x; , ..., xj . Write also C;
|

11,4, iki .

e A solution is an assignment of a value D; to xj, for each | = 1,...,n, such that
all relations C; are satisfied.
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Coloring Problem

Decide whether a map can be colored by 3 colors such that neighboring regions
get different colors.

For each region a variable x; with domain D; = {red, green, blue}.

For each pair of variables X, x; corresponding to two neighboring regions, a
constraint Xj 7 X;.

NP-complete problem.
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Resolution by Backtracking

Instantiate the variables in some order.

As soon as all variables in a constraint are instantiated, determine its truth
value.

If the constraint is not satisfied, backtrack to the last variable whose domain
contains unassigned values, otherwise continue instantiation.
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Efficiency Problems

Mackworth 77

1. If the domain D; of a variable x; contains a value v that does not satisfy Cj, this
will be the cause of repeated instantiation followed by immediate failure.

2. If we instantiate the variables in the order x4, X5, ..., Xn, and for x; = v there is no
value w € Dj, for] > I, such that Cjj(v, w) Is satisfied, then backtracking will try
all values for x;, fail and try all values for x;_, (and for each value of x;_; again
all values for x;), and so on until it tries all combinations of values for Xj.1, ..., X;
before finally discovering that v is not a possible value for X;.

The identical failure process may be repeated for all other sets of values for
X1, «ee s Xj_1 With X; = V.
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Local Consistency

Consider CSP with unary and binary constraints only.

Constraint graph G
> For each variable x; a node 1.

> For each pair of variables Xx;, X; occurring in the same binary constraint, two
arcs (i,)) and (j, 1).

The node i is consistent if C;(v), for all v € D;.

The arc (i,]) is consistent, if for all v € D; with Cj(v) there exists w € D; with
Cj(w) such that Cj;(v, w).

The graph is node consistent resp. arc consistent if all its nodes (resp. arcs) are
consistent.
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Arc Consistency

Algorithm AC-3 (Mackworth 77):
begin
for i + 1 until n do Dj «+ {v € D; | Cj(V)};
Q —{@.))[(,)) earcs(G),i Zj}
while Q not empty do
begin
select and delete an arc (i,]J) from Q;
if REVISE(i,j) then
Q — QuU{(k,i) | (ki) carcs(G),k Zi,k Zj}
end

end
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Arc Consistency

procedure REVISE(i,j):
begin
DELETE <« false
for each v € D; do
if there is no W € Dj such that Cjj(v,w) then
begin
delete Vv from Dj;
DELETE <« true
end;
return DELETE

end
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Crossword Puzzle

Dechter 92

Word Li st
Af t Laser
Al e Lee
Eel Li ne
Heel Sails

H ke Sheet
Hoses St eer
Keel Ti e
Knot
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Solution

1 Across 4 AcCr oss 7/ AcCross 8 Across

Heel 14
H ke 15
Keel

Knot 21
Li ne 16

2 Down 3 Down 5 Down 6 Down
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Lookahead

Apply local consistency dynamically during search

e Forward Checking: After assigning to x the value v, eliminate for all uninstanti-
ated variables y the values from Dy that are incompatible with v.

e Partial Lookahead: Establish arc consistency for all (y,y’), where y, y’ have not
been instantiated yet and y will be instantiated before y’.

e Full Lookahead: Establish arc consistency for all uninstantiated variables.
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Nn-Queens Problem

Place n queens in an n x n chessboard such that no two queens threaten each
other.

e Variables x;,1 = 1,..., n with domain D; = {1, ..., n} indicating the column of the
gueen in line i.

e Constraints
> Xi ZXi, for1 <1 <] < n(vertical)
> Xj ZX+( —1),forl <i <] <n(diagonal 1)

> Xj ZX —( —1i), for1 <i <j < n(diagonal 2)
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Forward Checking ¢

1A
2C
3E
4BG
5B
6D
5D
4H
5B
6D
T7F
6 (no more value)
5D
4 (no more value)
3F
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Partial Lookahead g

1A
2C

3E (delete 4B and 5D)

4GH

5B (no value left for 6)

3F (delete 6D and 6E)

4BH (failed, backtrack to 4)
3G (delete 5D and 7E)

4B

O No value for queen 6
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Full Lookahead

1A

2C
3E
3F
3G
3H

2D
3B
3F

O No value for queen 6
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Typical structure of a constraint program

e Declare the variables and their domains
e State the constraints
e Enumeration (labeling)

The constraint solver achieves only local consistency.

In order to get global consistency, the domains have to be enumerated.
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Labeling

Assigning to the variables their possible values and constructing the corre-
sponding search tree.

Important questions
1. In which order should the variables be instantiated (variable selection) ?

2. In which order should the values be assigned to a selected variable (value
selection) ?

Static vs. dynamic orderings

Heuristics
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Dynamic variable/value orderings

e Variable orderings
> Choose the variable with the smallest domain “first fail”

> Choose the variable with the smallest domain that occurs in most of the
constraints “most constrained”

> Choose the variable which has the smallest/largest lower/upper bound on
Its domain.
e Value orderings
> Try first the minimal value in the current domain.
> Try first the maximal value in the current domain.

> Try first some value in the middle of the current domain.
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Constraint programming systems

System Avail. Constraints | Language | Web site
B-prolog comm. FinDom Prolog WWW.probp.com
CHIP comm. FinDom, Prolog, Www.cosytec.com
Boolean, C, C++
Linear Q
Hybrid
Choco free FinDom Claire choco-constraints.net
Eclipse free non- | FinDom, Prolog www.icparc.ic.ac.uk/
profit Hybrid eclipse/
GNU Prolog | free FinDom Prolog gnu-prolog.inria.fr
IF/Prolog comm. FinDom Prolog www.ifcomputer.co.jp
Boolean,
Linear R
ILOG comm. FinDom, C++, www.ilog.com
Hybrid Java
NCL comm. FinDom www.enginest.com
Mozart free FinDom Oz Www.mozart-o0z.org
Prolog IV comm. FinDom, Prolog www.prologia.fr
nonlinear
intervals
Sicstus comm. FinDom, Prolog WWW.SIicS.se/sicstus/
Boolean,
linear R/Q
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Integer vs. constraint programming

Practical Problem Solving
e Model building : Language

e Model solving : Algorithms
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IP vs. CP : Language

P CP
Variables 0-1 Finite domain
Constraints | Linear equations Arithmetic constraints
and inequalities | Symbolic/global constraints

Example
e Variables: Xq,...,Xn € {0,...,m — 1}

e Constraint : Pairwise different values
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Example ¢

Integer programming: Only linear equations and inequalities

Xi7/Xj < Xj < X V X > Xj
N Xj SXj—l\/Xi ZXJ'+1

Eliminating disjunction

Xi_Xj+1§myi, Xj—Xi+1§myj’ Yi+Yj:1,
i,V €{0,1}, 0 <x;,X <m—1,

New variables: z; = 1iffx; =k,1=1,...,n, k=0,...,m—1

Zipt - *Zm—1 =1, Zgp*+--FZp < 1

Constraint programming ~~ symbolic constraint

alldifferent(Xq, ..., Xn)
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Symbolic/global constraints

e alldifferent([Xq,...,Xn])

e cumulative([Sq,...,Sn],[dq,...,dn],[F1,..-,n], C,€).
> n tasks: starting time s;, duration d;, resource demand r;

> resource capacity c, completion time e.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
cunul ative([1, 2, 4], cunul ative([1, 2, 2], cunmul ative([1, 3, 5],
[4, 2, 2], [1,1,1], [2,1,1],
[1,2,2], 3) [2,1,2], 3) [1,1,1], 1)
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Diffn Constraint

Beldiceanu/Contejean’94

e Nonoverlapping of n-dimensional rectangles [Oq,...,0On, L4, ..., Ln], where O;
resp. L; denotes the origin resp. length in dimension i

L diffn([[Oll, cee sy Oln’ Lll’ ceny Lln], ceny [Om1’ . Omn, Lm]_, reey Lmn]])

5

diffn([[1,2,2,2],[3, 1,2,1],[4,2,3,3]])

e Generalform: diffn(Rectangles,Min_Vol,Max_Vol,End,Distances,Regions)
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IP vs. CP : Algorithms

P CP
Inference Linear programming Domain filtering
Cutting planes Constraint propagation
Search Branch-and-relax Branch-and-bound
Branch-and-cut
Bounds on Two-sided One-sided
the objective
function

4025



Local vs. global reasoning

Linear arithmetic constraints

3Ix+y < 7,
Jy +x < 7,

X+y = Z,

x,y € {0,..,3}
CP x,y<2,z</4
LP x,y<2,2<35
P x,y<2,z<3

Global reasoning in CP ? ~~ global constraints !



Global reasoning in CP

Example
e X1,X2,X3 € {0,1}
e pairwise different values

e Local consistency : 3 disequalities : Xq # X9, X1 7 X3, X2 7 X3
~> X1, X2,X3 € {0, 1}, i.e., no domain reduction is possible

e Global constraint : alldifferent(Xq, Xp, X3)
~ detects infeasibility (uses bipartite matching)

Global reasoning in CP : inside global constraints
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Summary

ILP CP(FD)
Language Linear arithmetic Arithmetic constraints
— Symbolic constraints
Global consistency (LP) Local consistency
Algorithms Cutting planes Domain reduction
Branch-and-bound User-defined enumeration
Branch-and-cut

e Symbolic constraints ~~ more expressivity + more efficiency

e Unifying framework for CP and IP: Branch-and-infer
(Bockmayr/Kasper 98)
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Discrete Tomography

e Binary matrix with m rows and n columns
> Horizontal projection numbers (hq, ..., hm)

> Vertical projection numbers (vq, ..., Vn)

e Properties

> Horizontal convexity (h)

> Vertical convexity (V) H

> Connectivity (polyomino) (p)

N B WO PR

e Complexity (Woeginger01l)
> polynomial: (), (p,v,h)
> NP-complete: (p,v), (p,h), (v,h), (v), (h), (p)
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IP Model

0 cell(i,)) is labeled white

Variables  x; =
¢ ! {1 cell(i,j) is labeled black

e Constraints I: Projections

n m
2 % =hin X % =Y,
=1 i=1

e Constraints Il: Convexity

n
hixi + > i < hj,
|=k+h,
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IP Model (contd)

e Constraints Ill: Connectivity

j+hi_1 j+hi_1
D Xik— X Xirpk <hi—1
k:j k:J
Xi2

h,=4
h,..=3

e Various linear arithmetic models possible, e.g. convexity

e Enormous differences in size and running time, e.g. 1 day vs. < 1 sec

e Large number of constraints (~ 3mn in the above model)
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Finite Domain Model

e Variables
> X; start of horizontal convex block inrow i, for1 <i <m

> y; start of vertical convex block in (\:(olumn j,for1 <j<n

2113 3 3
Vi1 35311
H

X
W wWwNEPEDN
N N O w N

e Domain
> X €[1,...,n—h;+1],for1 <i<m

t>w€ﬁw”m—w+qjm1§j§n
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Conditional Propagation

e Projection/Convexity modelled by FD variables

o Compatibility of xj and y;
X <] <Xjthy <=y <1 <yj+y

forl<i<mandl<j<n

row i

e Conditional propagation

if xj <] then (if j < x; +hj then (y; < i, i <y +V)))
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Finite Domain Model (contd)

e Connectivity

1 X, X,+h-1 N
owi [T H T
. 1 -~y - - - - - =n - - N
SEIDE HENE e
Xt hi+1' 1 X

e Block i must start before the end of block 1 + 1

XiSXi+l+hi+l_1’ forl<i<m-1

e Block i + 1 must start before the end of block |

Xi+1§Xi+hi—1, forl<i<m-1

4034



Cumulative

13437644342

RPNNSNDRDOIOIARP

3437644342

L — —

L

4035



PNONNNPRRROOOA”MPRE

2d and 3d Diffn Model
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