Dr. Gunnar Klau Abdelhalim Larhlimi Institut für Mathematik II AG Mathematik in den Lebenswissenschaften

Discrete Mathematics First Review WS 07/08

Name:

Matrikelnummer:

Before starting, write your name and registration number.

The use of any reference material is strictly forbidden.

This review consists of 4 pages including this page. Please check that you have them all!

Exercise	Score	Max Score
1.a		2
1.b		2
1.c		2
1.d		2
2.a		3
2.b		3
3		6
Total		20

Exercise 1

2+2+2+2 Punkte

Give small examples of each of the following types of linear programming problems. Justify your answer.

a) Infeasible,

Answer:

$$\max x$$

s.t.
$$x \le -1,$$

$$x \ge 0,$$

$$x \in \mathcal{R}$$

b) Unbounded,

Answer:

$$\begin{array}{l} \max \ x \\ \text{s.t.} \\ x \ge 0, \\ x \in \mathcal{R} \end{array}$$

c) With a unique optimal solution, Answer:

$$\begin{array}{l} \min \ x \\ \text{s.t.} \\ x \ge 0, \\ x \in \mathcal{R} \end{array}$$

d) With infinitely many optimal solutions, Answer:

$$\max x + y$$

s.t.
$$x + y \le 1,$$

$$(x, y) \in \mathcal{R}^2$$

Exercise 2

3+3 Punkte

Consider the following linear programming problem (LP)

$$\max c^T x$$

s.t.
$$Ax \le b$$

$$x \ge 0$$

a) Give the dual of (LP). Answer:

$$\min b^T y \\ \text{s.t.} \\ A^T y \ge c \\ y \ge 0$$

b) Give a small linear problem for which the primal and its dual are identical. Answer:

The dual is also given by

$$\max (-b^T)y$$

s.t.
$$(-A^T)y \le -c$$

$$y \ge 0$$

If the primal and its dual are identical, then b = -c and $A^T = -A$ Small example:

$$c = (1,1)^T$$
, $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $b = (-1,-1)^T$.

Exercise 3

6 Punkte

Given a vertex v of a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0\}$, prove that there exists a cost vector $c \in \mathbb{R}^n$ such that the unique optimal solution of the LP max $\{c^Tx : x \in P\}$ is attained at v.

Answer:

Let v be a vertex of a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0\}$. v is then a face of P with dimension equal to 0. Hence, there exists a vector $\alpha \in \mathbb{R}^n$ and a scalar beta $\in \mathbb{R}$ such that the inequality $\alpha^T x \leq \beta$ is valid for P ($P \subseteq \{x \in \mathbb{R}^n \mid \alpha^T x \leq \beta\}$) and $\{v\} = P \cap \{x \in \mathbb{R}^n \mid \alpha^T x = \beta\}$. Let $c = \alpha$ and consider the following LP

$$\max\{c^T x : x \in P\} \ (I)$$

Since $c^T x \leq \beta$ for every $x \in P$, $c^T v = \beta$ and $v \in P$, v is an optimal solution for the LP (I). Moreover, the set of optimal solutions for the LP (I) is the face $F = P \cap \{x \in \mathcal{R}^n \mid c^T x = \beta\}$, which is equal to the vertex v. Then v the unique optimal solution of the LP (I).