Dr. Gunnar Klau
Abdelhalim Larhlimi

Discrete Mathematics First Review WS 07/08

Name:
Matrikelnummer:

Before starting, write your name and registration number.
The use of any reference material is strictly forbidden.
This review consists of 4 pages including this page. Please check that you have them all!

Exercise	Score	Max Score
$1 . a$	2	
$1 . b$	2	
$1 . c$	2	
$1 . d$	2	
$2 . a$	3	
$2 . b$	3	
3	6	
Total	20	

Give small examples of each of the following types of linear programming problems. Justify your answer.
a) Infeasible,

Answer:

$$
\begin{aligned}
& \max x \\
& \text { s.t. } \\
& x \leq-1, \\
& x \geq 0, \\
& x \in \mathcal{R}
\end{aligned}
$$

b) Unbounded,

Answer:

$$
\begin{aligned}
& \max x \\
& \text { s.t. } \\
& \qquad \begin{array}{l}
x \geq 0, \\
x \in \mathcal{R}
\end{array}
\end{aligned}
$$

c) With a unique optimal solution, Answer:

$$
\begin{aligned}
& \min x \\
& \text { s.t. } \\
& x \geq 0, \\
& x \in \mathcal{R}
\end{aligned}
$$

d) With infinitely many optimal solutions,

Answer:

$$
\begin{aligned}
& \max x+y \\
& \text { s.t. } \\
& x+y \leq 1, \\
& (x, y) \in \mathcal{R}^{2}
\end{aligned}
$$

Exercise 2

Consider the following linear programming problem (LP)

$$
\begin{aligned}
& \max c^{T} x \\
& \text { s.t. } \\
& \qquad \begin{aligned}
A x & \leq b \\
x & \geq 0
\end{aligned}
\end{aligned}
$$

a) Give the dual of (LP).

Answer:

$$
\begin{aligned}
& \text { min } b^{T} y \\
& \text { s.t. } \\
& \begin{array}{l}
A^{T} y \geq c \\
\quad y \geq 0
\end{array}
\end{aligned}
$$

b) Give a small linear problem for which the primal and its dual are identical.

Answer:
The dual is also given by

$$
\begin{aligned}
& \max \left(-b^{T}\right) y \\
& \text { s.t. } \\
& \qquad \begin{array}{r}
\left(-A^{T}\right) y \leq-c \\
y
\end{array} \quad \begin{array}{l}
\text { a }
\end{array}
\end{aligned}
$$

If the primal and its dual are identical, then $b=-c$ and $A^{T}=-A$
Small example:

$$
c=(1,1)^{T}, A=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \text { and } b=(-1,-1)^{T} .
$$

Exercise 3

6 Punkte

Given a vertex v of a polyhedron $P=\left\{x \in R^{n}: A x \leq b, x \geq 0\right\}$, prove that there exists a cost vector $c \in R^{n}$ such that the unique optimal solution of the LP $\max \left\{c^{T} x: x \in P\right\}$ is attained at v.
Answer:
Let v be a vertex of a polyhedron $P=\left\{x \in R^{n}: A x \leq b, x \geq 0\right\} . v$ is then a face of P with dimension equal to 0 . Hence, there exists a vector $\alpha \in \mathcal{R}^{n}$ and a scalar beta $\in \mathcal{R}$ such that the inequality $\alpha^{T} x \leq \beta$ is valid for $P\left(P \subseteq\left\{x \in \mathcal{R}^{n} \mid \alpha^{T} x \leq \beta\right\}\right)$ and $\{v\}=P \cap\left\{x \in \mathcal{R}^{n} \mid \alpha^{T} x=\beta\right\}$. Let $c=\alpha$ and consider the following LP

$$
\max \left\{c^{T} x: x \in P\right\}(I)
$$

Since $c^{T} x \leq \beta$ for every $x \in P, c^{T} v=\beta$ and $v \in P, v$ is an optimal solution for the LP (I). Moreover, the set of optimal solutions for the $\operatorname{LP}(I)$ is the face $F=P \cap\left\{x \in \mathcal{R}^{n} \mid\right.$ $\left.c^{T} x=\beta\right\}$, which is equal to the vertex v. Then v the unique optimal solution of the LP (I).

