

Dr. Gunnar W. Klau Abdelhalim Larhlimi Institut für Mathematik II AG Mathematik in den Lebenswissenschaften

Linear Algebra

We recall some basic definitions from linear algebra.

• A vector $x \in \mathbb{R}^n$ is a *linear combination* of the vectors $x^1, \ldots, x^p \in \mathbb{R}^n$ if

$$x = \sum_{i=1}^{p} \lambda_i x^i$$
, for some $\lambda_1, \dots, \lambda_p \in \mathbb{R}$

- If in addition, $\lambda_1, \ldots, \lambda_p = 1$, x is an affine combination of x^1, \ldots, x^p .
- For $X \subseteq \mathbb{R}^n$, $X \neq \emptyset$, the *linear* (resp. *affine*) *hull* of X, denoted by lin(X) (resp. aff(X)), is the set of all linear (resp. affine) combinations of finitely many vectors of X.
- A set X ⊆ ℝⁿ, X ≠ Ø, is called *linearly independent* (resp. affinely independent) if no vector x ∈ X is expressible as a linear (resp. affine) combination of the vectors in X \ {x}, otherwise X is called *linearly dependent* (resp. affinely dependent).
- The rank (resp affine rank) of X, denoted by rank(X) (resp arank(X)), is the cardinality of the largest linearly (resp. affinely) independent subset of X.
- If $0 \in \operatorname{aff}(X)$ then $\operatorname{arank}(X) = \operatorname{rank}(X) + 1$, otherwise $\operatorname{arank}(X) = \operatorname{rank}(X)$.
- By definition, the *dimension* of a set $X \subseteq \mathbb{R}^n$ is the <u>maximum</u> number of affinely independent vectors in X minus one, i.e., $\dim(X) = \operatorname{arank}(X) 1$.
- If $0 \in \operatorname{aff}(X)$ then $\dim(X) = \operatorname{rank}(X)$, otherwise $\dim(X) = \operatorname{rank}(X) 1$.

Example:

Let

$$P = \{ x \in \mathbb{R}^2 \mid 0 \le x_1 \le 1 \},\$$

$$F_1 = P \cap \{ x \in \mathbb{R}^2 \mid x_1 = 0 \},\$$

$$F_2 = P \cap \{ x \in \mathbb{R}^2 \mid x_1 = 1 \}.\$$

We have

aff
$$(P) = \mathbb{R}^2$$
,
aff $(F_1) = \{x \in \mathbb{R}^2 \mid x_1 = 0\},$
aff $(F_2) = \{x \in \mathbb{R}^2 \mid x_1 = 1\}.$

- We can easily see that the vectors $(1,0)^T \in P$ and $(0,1)^T \in P$ are linearly independent in P. Therfeore, $\operatorname{rank}(P) = 2$. Since $0 \in \operatorname{aff}(P)$, we have $\dim(P) = \operatorname{rank}(P) = 2$ (P is full-dimensional).
- F_1 and F_2 are two faces of P defined by the valid inequalities $0 \le x_1$ and $x \le 1$, respectively.
- No other vector in F_1 is linearly independent of the vector $(0,1)^T \in F_1$. Then, rank $(F_1) = 1$. Since $0 \in \operatorname{aff}(F_1)$, we have dim $(F_1) = \operatorname{rank}(F_1) = 1$.
- We can easily see that the vectors $(1,0)^T \in F_2$ and $(1,1)^T \in F_2$ are linearly independent in F_2 . Therefore, rank $(F_2) = 2$. Since $0 \notin \operatorname{aff}(F_2)$, we have dim $(F_2) = \operatorname{rank}(F_2) - 1 = 1$.

Hint:

For a given set of vectors $x^1, \ldots, x^p \in \mathbb{R}^n$, they are linearly independent if

$$\lambda_1 x^1 + \lambda_2 x^2 + \dots, + \lambda_p x^p = 0$$

only when $\lambda_1 = \lambda_2 = \dots, = \lambda_p = 0.$