Linear Algebra

We recall some basic definitions from linear algebra.

- A vector $x \in \mathbb{R}^{n}$ is a linear combination of the vectors $x^{1}, \ldots, x^{p} \in \mathbb{R}^{n}$ if

$$
x=\sum_{i=1}^{p} \lambda_{i} x^{i}, \text { for some } \lambda_{1}, \ldots, \lambda_{p} \in \mathbb{R}
$$

- If in addition, $\lambda_{1}, \ldots, \lambda_{p}=1, x$ is an affine combination of x^{1}, \ldots, x^{p}.
- For $X \subseteq \mathbb{R}^{n}, X \neq \emptyset$, the linear (resp. affine) hull of X, denoted by $\operatorname{lin}(X)$ (resp. $\operatorname{aff}(X))$, is the set of all linear (resp. affine) combinations of finitely many vectors of X.
- A set $X \subseteq \mathbb{R}^{n}, X \neq \emptyset$, is called linearly independent (resp, affinely independent) if no vector $x \in X$ is expressible as a linear (resp. affine) combination of the vectors in $X \backslash\{x\}$, otherwise X is called linearly dependent (resp. affinely dependent).
- The rank (resp affine rank) of X, denoted by $\operatorname{rank}(X)(\operatorname{resp} \operatorname{arank}(X))$, is the cardinality of the largest linearly (resp. affinely) independent subset of X.
- If $0 \in \operatorname{aff}(X)$ then $\operatorname{arank}(X)=\operatorname{rank}(X)+1$, otherwise $\operatorname{arank}(X)=\operatorname{rank}(X)$.
- By definition, the dimension of a set $X \subseteq \mathbb{R}^{n}$ is the maximum number of affinely independent vectors in X minus one, i.e., $\operatorname{dim}(X)=\operatorname{arank}(X)-1$.
- If $0 \in \operatorname{aff}(X)$ then $\operatorname{dim}(X)=\operatorname{rank}(X)$, otherwise $\operatorname{dim}(X)=\operatorname{rank}(X)-1$.

Example:

Let

$$
\begin{aligned}
P & =\left\{x \in \mathbb{R}^{2} \mid 0 \leq x_{1} \leq 1\right\}, \\
F_{1} & =P \cap\left\{x \in \mathbb{R}^{2} \mid x_{1}=0\right\}, \\
F_{2} & =P \cap\left\{x \in \mathbb{R}^{2} \mid x_{1}=1\right\} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{aff}(P)=\mathbb{R}^{2}, \\
& \operatorname{aff}\left(F_{1}\right)=\left\{x \in \mathbb{R}^{2} \mid x_{1}=0\right\}, \\
& \operatorname{aff}\left(F_{2}\right)=\left\{x \in \mathbb{R}^{2} \mid x_{1}=1\right\} .
\end{aligned}
$$

- We can easily see that the vectors $(1,0)^{T} \in P$ and $(0,1)^{T} \in P$ are linearly independent in P. Therfeore, $\operatorname{rank}(P)=2$. Since $0 \in \operatorname{aff}(P)$, we have $\operatorname{dim}(P)=$ $\operatorname{rank}(P)=2(P$ is full-dimensional).
- F_{1} and F_{2} are two faces of P defined by the valid inequalities $0 \leq x_{1}$ and $x \leq 1$, respectively.
- No other vector in F_{1} is linearly independent of the vector $(0,1)^{T} \in F_{1}$. Then, $\operatorname{rank}\left(F_{1}\right)=1$. Since $0 \in \operatorname{aff}\left(F_{1}\right)$, we have $\operatorname{dim}\left(F_{1}\right)=\operatorname{rank}\left(F_{1}\right)=1$.
- We can easily see that the vectors $(1,0)^{T} \in F_{2}$ and $(1,1)^{T} \in F_{2}$ are linearly independent in F_{2}. Therefore, $\operatorname{rank}\left(F_{2}\right)=2$. Since $0 \notin \operatorname{aff}\left(F_{2}\right)$, we have $\operatorname{dim}\left(F_{2}\right)=$ $\operatorname{rank}\left(F_{2}\right)-1=1$.

Hint:

For a given set of vectors $x^{1}, \ldots, x^{p} \in \mathbb{R}^{n}$, they are linearly independent if

$$
\lambda_{1} x^{1}+\lambda_{2} x^{2}+\ldots,+\lambda_{p} x^{p}=0
$$

only when $\lambda_{1}=\lambda_{2}=\ldots,=\lambda_{p}=0$.

