Discrete Mathematics WS 07/08
 Homework 7 (due 14/12)

Exercise 1:

Prove the following lemmas from the lecture.

Lemma.

Let $G=(V, E, H, I)$ be a SEAG with n alignment edges and m interaction matches. Then

- $P_{\mathcal{R}}(G)$ is full-dimensional and
- the inequality $x_{i} \leq 1$ is facet-defining iff there is no $e_{j} \in E$ in conflict with e_{i}.

Lemma.

Let $G=(V, E, H, I)$ be a SEAG with n alignment edges and m interaction matches.

1. The inequality $x_{i} \geq 0$ is facet-defining iff e_{i} is not contained in an interaction match.
2. For each interaction match $m_{i, j}$ the inequality $y_{i j} \geq 0$ is facet-defining.

Exercise 2:

Prove that the number of clique inequalities arising from a complete bipartite graph $K_{p, q}$ is $\binom{p+q-2}{p-1}$.
Hint: Develop a recurrence relation for the number of source-sink paths in $\operatorname{PG}\left(K_{p, q}\right)$ and use complete induction to prove the statement.

Exercise 3:

Consider the problem of tiling a planar region R with n dominoes. Each domino is a 2×1 rectangle. R is an arbitrary collection of $2 n 1 \times 1$ squares. Figure 1 shows one example of such a region. The squares are numbered 1 through $2 n$. R is described by the set of all the pairs $(a, b), a, b \in\{1,2, \ldots, 2 n\}, a<b$, such that square a and square b are edgeconnected (i.e., have an edge in common). In this representation, let $R=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$, where each p_{k}, for $k=1$ to r, is a pair of edge-connected squares.

Abbildung 1: Example of a region R where $2 n=16$. A description of R is the set $\{(1,2),(2,3),(3,4),(2,5), \ldots,(14,16),(15,16)\}$
a) Model the problem as a constraint satisfaction problem where the dominoes are the variables, that is, define the variable domains and the constraints.
b) Model the problem as a constraint satisfaction problem where the squares are the variables.

Exercise 4:

Consider the following network

Assume that each variable (node) has a domain of $\{1,2,3,4\}$.
a) Model the problem as a constraint satisfaction problem
b) Apply arc consistency to reduce the domains of the variables.
c) What further reduction can be obtained by fixing the value of the node 5 to the minimum possible value?

