Dr. Gunnar W. Klau
Abdelhalim Larhlimi

Discrete Mathematics WS 07/08
 Homework 3 (due 09/11)

Exercise 1:

Prove that exactly one of the following two cases holds for the LP $\max \left\{c^{T} x: A x \leq\right.$ $0, x \geq 0\}$:
a) $x^{*}=0$ is an optimal solution.
b) LP is unbounded.

Exercise 2:

Consider the following primal problem

$$
\begin{aligned}
& \max x_{1}+4 x_{2}+5 x_{3} \\
& \text { s.t. } \\
& \begin{aligned}
-x_{1}+x_{2}+x_{3} & \leq 4 \\
3 x_{1}+x_{2}+x_{3} & \leq 16 \\
x_{2} & \geq 1 \\
x_{1}, & x_{2},
\end{aligned} x_{3} \geq 0
\end{aligned}
$$

Without using the Simplex Method, find optimal primal and dual solutions from the following list. Explain your reasoning.

$$
\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
7
\end{array}\right]\left[\begin{array}{r}
\frac{7}{2} \\
\frac{3}{2} \\
15
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
6
\end{array}\right]\left[\begin{array}{r}
3 \\
-1 \\
8
\end{array}\right] \quad\left[\begin{array}{c}
\frac{7}{2} \\
\frac{3}{2} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
\frac{7}{2} \\
\frac{3}{2} \\
0
\end{array}\right]\left[\begin{array}{r}
-1 \\
12 \\
7
\end{array}\right]
$$

Exercise 3:

a) Consider an LP in canonical form, i.e.
(LP) $\quad \max c^{T} x$

$$
\begin{aligned}
\text { s.t. } \quad A x & \leq b \\
x & \geq 0
\end{aligned}
$$

and the corresponding dual problem

$$
\text { (DP) } \begin{aligned}
\min \quad b^{T} y & \\
\text { s.t. } A^{T} y & \geq c \\
y & \geq 0
\end{aligned}
$$

Show that the dual of the dual problem (DP) corresponds to the primal problem (LP).
b) prove that it is impossible to have primal and dual both unbounded

Exercise 4:

Consider the polyhedron P described by

$$
\begin{aligned}
x_{1}-x_{2} & \leq 0 \\
-x_{1}+x_{2} & \leq 1 \\
2 x_{2} & \geq 5 \\
8 x_{1}-x_{2} & \leq 16 \\
x_{1}+x_{2} & \geq 2
\end{aligned}
$$

a) Find the dimension of P
b) Describe all the faces of P
c) Give a 'minimal' representation of P (a representation that uses just the facetdefining inequalities)

Exercise 5:

a) Why are we so concerned with vertices?
b) Is the following statement true? The set of optimal solutions to a linear program must form a face of the feasible polyhedron. Prove your answer.
c) Is it possible to start with a full-dimensional polyhedron (dimension n), enforce one of its inequalities as an equality and have a nonempty polyhedron with dimension two lower than the original polyhedron (dimension $n-2$)? If so, give an example. If not, give an argument why not.

