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1 Introduction

A distributed execution engine is a software systems which runs on a cluster of net-
worked computers and presents the illusion of a single and reliable machine that pro-
vides large aggregate amount of computational and I/O performance. Each machine
in these networked systems is capable of handling data-dependent control flow. The
computational power effectiveness of a distributed execution engine is determined by
the expressiveness of the data execution model which describes the distributed com-
putations. Distributed executed engines are attractive because they shield developers
from distributed and parallel computing’s challenging aspects such as task schedul-
ing, data synchronization, transferring data and dealing with failures in networks.
A general purpose of high performance distributed execution engine for coarse-grain
data parallel application is proposed which enables the developers to create easily
large scale distributed application without requiring them to gain expertise on con-
currency techniques beyond being able to draw a graph of the data dependencies of
their algorithms. Based on the graph of DEESs, a job manager intelligently distributes
the workload of network data processing so that the resources of execution engines
are used efficiently. During the run time, a job manager automatically modifies the
graph in order to improve the efficiency of data flow, and these modifications are
based on run time information [1].

2 Distributed Execution Engines

The distributed execution engines such as Dryad, MapReduce, Pregel, CIEL, and
Hadoop - provide the computational model that performs several independent se-
quential computations in parallel which comprises of subcomponents of a larger com-
putation. However, for achieving the necessary data processing efficiencies, there are
several requirements (or limitations) which are common in these models. One require-
ment is that every subcomponent must run in a separate isolated address space for its
complete lifetime. Second requirement is that data exchanges can only occur between
each round of processing (since communications are expensive). Generally, DEEs are

1



used to process a large number of independent data items, and relatively these data
items must be grouped into large batches (which is also referred to as partitions)
with a comparative uniform execution time per batch to make the expensive cost of
communication better and process creation or destruction. However, there are several
requirements, that makes it difficult to solve the general optimization problems on
a DDPE engine which typically require substantial communication between different
tasks, particularly in the communication of intermediate results [2].

2.1 Distributed Data-Parallel Patterns and Execution En-
gines

The are many distributed data-parallel patterns which are identified recently and pro-
vide the opportunities to facilitate the data-intensive applications and their workflow,
which can be executed with the split data in parallel on various distributed computing
nodes. The main advantages of using these patterns are:

1. Support the distribution of data and parallel processing of data with distributed
data on multiple nodes/cores.

2. Provide a higher-level programming model in order to facilitate the user pro-
gram parallelization.

3. Follow a principle of "moving computations to data” that reduces the data
movements overheads.

4. Have a good scalability and efficiency in performance when executing on dis-
tributed resources .

5. Support run time features such as load balancing, fault-tolerance, etc.

6. Simplify the difficulties for parallel programming as compared to the traditional
programming interfaces MPI [3] and openMP[4].

There are many execution engines which can be implemented over the distributed
data-parallel patterns. MadReduce is such kind of example that has different DDP
execution engine implementations. A most known MapReduce execution engine is
Hadoop[5].

3 Main Characteristics of Distributed Execution
Engines

The design purpose of Distributed Execution Engines is to consider the fundamental
characteristics which are as follows;

e Task Scheduling

e Data Distribution



Load Balancing
e Transparent Fault Tolerance

Control Flow

Tracking Dependencies

These are the fundamental aspects which different kinds of execution engines have
some mechanisms according to their design in order to perform above certain tasks
for completing their jobs.

4 Types of Distributed Exection Engines

There are different types of DEEs such as Dryad, Nephele, MapReduce, Hyracks,
Pregel, CIEL, etc. and they used different types of systems, for instance, Dryad,
Nephele, Hyracks, MapReduce are all use the Directed Acyclic Graph (DAG) system
and in Pregel the Bulk Synchronous Parallel (BSP) system is implemented. The
description of various execution engines is as follows:

5 Dryad Execution Engine - An Introduction

The Dryad distributed computing engine is designed by Microsoft to support the data-
parallel computing and used in many important applications such as data-mining
applications, image and stream processing and scientific computations. For these
types of applications, distributing the data and computations on various clusters in
an efficient way to process the high volume of data [6]. In addition, Dryad is a high-
performance general-purpose distributed execution engine for running distributed ap-
plications on various cluster technologies. Dryad data-parallel applications combines
the computational ”"vertices” with the communication ”channels” to form a data flow
graph. A Dryad runs the data-parallel applications on a set of available computers
by executing the vertices of this graph, communicating through files, TCP pipes, and
shared-memory FIFOs. Dryad also simplifies the task of implementing the distributed
applications by addressing the issues in the preceding list, which are as follows:

© The Dryad execution engine handles the most difficult problems of large-scale
distributed and concurrent applications such as delivering the data to appropri-
ate locations, scheduling the use of computers and their CPUs, optimization,
failure detection and recovering from computer failures or communication, and
transporting data between vertices.

© The design of Dryad execution engine is to scale from powerful multi-core sin-
gle computers through many small clusters of computer, to data centers with
thousands of computers.



© Dryad scheduling vertices to run simultaneously on multiple computers or on
multiple CPU cores within a computer.

© The application can discover the size and placement of data at runtime, and
modify the graph as the computation progresses in order to make an efficient
use of the available distributed network resources.

© Dryad has an expressive programming model which is designed to support the
cluster-based computations. Dryad can also handle the large-scale data-parallel
computations.

5.1 The Overview of Dryad System

A Dryad job is a mechanism for executing a distributed data-parallel application on a
cluster and the structure of the Dryad job is determined by the flow of communication
between vertices through various channels. A Dryad job systems is represented as
Directed Acyclic Graph (DAG) where each vertex is a program and edges are denoted
by channels, and there are many vertices in the graph while executing the cores in
the computing cluster. Dryad has logical computation graph and during the runtime
that is mapped automatically onto the available physical resource, and each channel
at runtime is used to transfer a finite series of structured artifacts.

A schematic view of Dryad system organization is shown in the below Figure 1. A
Dryad job is organized by the process which is called the ”Job Manager” (represented
in the figure as JM) that runs either within the cluster or on a user’s workstation with
the network access to the cluster. The Job Manager comprises the application-specific
code for constructing the communication graph of job along with the library code in
order to schedule the task across the available resources. All the data in Dryad system
is sent directly to various available vertices and consequently the Job Manager is only
responsible for controlling decisions and it does not obstruct the transfer for any kind
of data.

The job manager (JM) communicate with name server (NS) to discover the list of
available computers in the network. The job manager also maintains the job graph
and schedules the running vertices (V) as computers become available while using the
daemon (D) as a proxy. The vertices exchange the data through files, TCP pipes or
shared-memory channels. The shaded portion in the figure is indicating the vertices in
the job graph which are currently running. The cluster of name server (NS) that has
list of available computer and it also expose the position of each available computer
within the network topology so that task scheduling decision can be made according
to their locations. A daemon (D) which in running on each network computer in the
cluster and that is responsible for creating processes for the job manager. The first
time vertex (V) is executed on a computer and its binary is sent from job manager
to the daemon and then afterwards it is executed from the cache. The daemons that
works as a proxy so that job manager can communicate with remote vertices and
can monitor the state of computation that how much data has been read and written
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Figure 1: Dryad system job organization [Ref. 7]

on its channels. It is a simple to run name server and set a daemon on a client
workstation in order to simulate a cluster and then run an entire job locally while
debugging it [7].

5.2 Dryad Graph

A Dryad job consist of a chain of processes and with each process piping its output
to the next process in the chain. Dryad extends the standard pipe model to manage
the distributed applications that are running on a cluster. Dryad job execution plan
is represented by a directed acyclic graph (DAG), which is also referred as Dryad
graph.

The above figure has two main components:

1. The basic job execution plan - On the left of figure shows the structure of job
operation as it runs on a single computer and it uses the standard pipe model,
and with each stage of job piping the data move from one stage to next stage.

2. On the right side of Dryad graph, it is shown that Dryad might implement the
operation as a distributed job running on a cluster of computers.

A Dryad graph is consist of some important features that are:

5.2.1 Input Data Partitions

A Dryad job starts with a collection of persistent input data, and it returns a processed
version of that data to the application. The input data is typically partitioned into
reasonable sizes which are distributed on various clusters before the job starts. The
partitioned input data can be created and distributed in many ways, including:

1. By manual partitioning the input data into a set of files and copy each file to
the client workstation.
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Figure 2: Dryad Graph [Ref. 6]

2. By using application to prepare the input partition and distribute the partitions
across the cluster.

5.2.2 Stage

A Dryad job execution contains more than one stages and each stage is associated
with an element of the Dryad basic execution plan.

5.2.3 Vertex

Each stage has more than one identical vertices and each vertex is an independent
instance of data processing code for a stage, and it also processes a subset of that
stage’s data. The process of calculation uses mainly three vertex types that are

labeled with R, M and X.

5.2.4 Channel

Vertices pass the processed data to the next stage of the Dryad job in the serialized
form over the channels. A vertex can have a channel to more than one vertex in the
next stage. Different types of channels ca be used at different point in the graph.
These channels must connect the vertices so that the graph is acyclic. Channels are
point to point and they connect the output of one vertex to the input of another
vertex.



5.3 Failure Recovery and Job Monitoring

Dryad runs on cluster of computer hardware and it is common to get fail during
execution on one or more client computers with or without warnings. The job manager
monitors the overall status of all executing vertices and also analyze the transient or
permanent failures. In Dryad system, a node must report within a set timeout value
and if a node fails to report within that particular period of time, the job manager
assumes that the vertex has been failed or there is any other problem such as computer
crashed, and it initiates the recovery procedures for failure node.

6 MapReduce - The concept

MapReduce is a programming model and associated implementation for processing
and generating large scale data sets. Users need to specify a map function that pro-
cesses a record (key/value pair) to generate a set of intermediate record (key/value
pair), and a reduce function that merges all intermediate values associated with the
same intermediate key. The programs that are written in this type of functional style
are automatically parallelized and executed on the large cluster of commodity ma-
chines. In MapReduce, the run-time system takes care of details of partitioning the
input data, scheduling the program for execution across a set of machines, handling
the failures of machines, and managing the required inter-machine communication.
This allows the programmers to easily utilize the resources of a large scale distributed
system without having any kind of experience. The implementation of MapReduce
runs on a large cluster of commodity machines and that is highly scalable such as a
typical MapReduce computation processes of many terabytes of data on thousands
of computers. The system is easy to use for programmers as hundred of MapRe-
duce programs have been implemented and they upward one thousand or more of
MapReduce jobs are executed on Google’s clusters on daily basis.

6.1 MapReduce System Overview

The Map instances are distributed across multiple network computers by automati-
cally partitioning the input data into a set of M splits. The input files splits can be
processed in parallel on various computers. The Reduce instances are also distributed
by partitioning the intermediate key space into R pieces using a partitioning func-
tion(e.g. hask(key) mod R). The number of partitions (R) and partitioning functions
are specified by the users. Figure 3 shows the overall flow of a MapReduce operation
in the implementation. When a user calls the MapReduce function, then the following
sequence of actions occurs which are:

1. The MapReduce for the first splits in the user program the input files into M
pieces of typically 16 to 64 megabytes (MB) per piece (i.e. controllable by
the user via an optional parameter). Then It starts up to many copies of the
program on a cluster of machines.



2. One set of copies for the Master program is special and the rest copies are sent
to workers that are assigned by the master. There are M map tasks and R
reduce tasks to assign. The master picks up the idle workers and assign each of
one a map task or a reduce task.

3. A map task that is assigned to a worker who reads the contents of the corre-
sponding input split. It parses out the key/value pairs of input data and passes
to each pair to the user-defined Map function. The intermediate key /value pairs
are buffered in memory that produced by the Map function.

4. The buffered pairs are written to the local disk periodically and partitioned into
R region by using the partitioning function. The locations of these buffered paris
on the local disk are passed back to the master who is responsible for forwarding
these locations to the reduce workers.

5. When a master notify the a reduce worker about these locations, it uses remote
calls procedure to read the buffered data from the local disks of the map workers.
When a reduce worker has read all the intermediate data, it sorts the data by
intermediate keys so that all occurrences of the same key are grouped together.
The sorting of data is needed because many different keys map to the same
reduce task. If the amount of intermediate data is too large to fit in memory
then an external sort is used.

6. The reduce worker iterates this process over the sorted intermediate data and
for each unique intermediate key encountered and it passes the key and also
the corresponding set of intermediate values to the user’s Reduce function. The
output of the Reduce function is appended to a final output file for this reduce
partitioned.

7. When all the map tasks and reduce tasks have been completed successfully,
then the master awake the user program. At this point , the MapReduce call in
the user program returns back to the user code.

After successful completion of tasks, the output of MapReduce execution is avail-
able in the R output files (one per reduce task with the file names as specified by the
user). Users don’t need to merge these R output files into one file because they often
pass these files as input to another MapReduce call or use them from another dis-
tributed application which is able to deal with input that is partitioned into multiple
files [8]. The figure 4 gives more details about the MapReduce execution process that
is given below:

6.2 Data Structure of The Master

The master keeps several data structures, for each map task and reduce task its stores
the various states such as idle, in-progress/in-process or completed, and the master
also keep the identity of the worker machine (for non-idle tasks). The master is the
main channel through which the location of intermediate file regions is disseminated
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from map tasks to reduce tasks. Therefore, for each completed map task, the master
stores the locations and sizes of the R intermediate file regions that are produced
by the map task. As the map tasks are completed then the updates to this location
and size information are received. The information is thrusted to worker with the
increment that have in-progress reduce tasks.

6.3 Task Granularity

The map phase is subdivided into M pieces and the reduce phase into R pieces as it
explained in above figure 4. Considerably, M and R should be large than the number
of worker machines. Each worker machine performs many different task in order to
improve the dynamic load balancing as well as speeds up to make recovery when a
worker gets fail.

6.4 Fault Tolerance

The designed purpose of the MapReduce library is to help the process of very large
amounts of data using hundreds or thousands of machines, the library must deal with
machine failures very effectively. The failures could be:

6.4.1 Worker Failure

The master pings each worker periodically and if there is no response comes from
worker in a certain amount of time then the master marks that worker as failed. Any
map task which is completed by worker are reset back to their initial idle state, and
it becomes eligible for scheduling on other workers. Similarly, if there is any map
task or reduce task is in-progress on a failed worker that is also reset to idle state
and becomes eligible for rescheduling. The completed map tasks are re-executed on
a failure because their output is stored on the local disk(s) of the failed machines and
that is inaccessible. Completed reduce tasks do not need to re-executed because their
output is stored in a global file system.

MapReduce is resilient for the large-scale worker failures. For example, during the
one MapReduce operation the network maintenance on a running cluster was causing
a group of almost 80 machines at a time to become unreachable for several minutes.
The master of MapReduce simple re-executed the work done by the unreachable work-
ers, and continued to make further progress, eventually the completion of MapReduce
operation.

6.4.2 Master Failure

The master writes periodic checkpoints of the master data structure as it is described
above. If the master task gets fail, then a new copy can be started from the last
checkpoint state. However, there is only a single master and its failure is unlikely.
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Therefore the current implementation abort the MapReduce computation if the mas-
ter gets fail. Clients can consider this type of condition and can retry the MapReduce
operation if they like to do it again.

7 Hyracks - An Introduction

Hyrack is a new software platform which is flexible, extensible, partition-parallel
framework designed to run efficient data-intensive computations on large shared-
nothing clusters of commodity computers. Hyrack computational model is repre-
sented as DAG (Directed Acyclic Graph) of data operators and connectors. Operators
run on partitions of input data and produce partitions of output data while connectors
repartitions the operators’ outputs to make the newly produced partitions available
at the consuming operators. Hyracks has the significant promise as a next-generation
platform for data-intensive applications.
There are some important which are as follows:

1. Hyracks has a built-in collection of operators that can be used to assemble data
processing jobs without needing to write processing logic similar to Map and
Reduce code.

2. The rich API enables the Hyracks operator implementations to describe the
operators’ behavioral and resource usage characteristics to the framework for
better jobs’ planning and runtime scheduling that utilize their operators.

3. The inclusion of a Hadoop compatibility layer which enables the users to run
existing Hadoop MapReduce jobs unchanged on Hyracks as an Initial strategy
"get acquainted” as well as a migration strategy for ”legacy” data-intensive
applications.

4. The initial method for Hyrack tasks scheduling on a cluster that involves the
basic fault recovery, to guarantee the job completion through restarts. The
performance overview of one class of job on Hyracks and Hadoop under various
failure rates to express the potential gains offered by a less pessimistic approach
to fault handling.

5. The Hyracks as an open source platform can be utilized by others in the data-
intensive computing community.

7.1 Hyracks System Overview

As Hyracks is a partitioned-parallel data flow execution platform that runs on shared-
nothing clusters of commodity computers. The large collection of data items are
stored on local partitions and distributed across the various nodes of the cluster. A
Hyracks job is a unit of work that is submitted by a client and processes one or
more collection of data in order to produce one or more output collections in the
form of partitions. Hyracks infrastructure and programming model efficiently divide
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computations on large data collection (spanning on multiple network machines) into
computations that work on each partition of the data separately. For example, a
Hyracks job is a dataflow DAG which is composed of operators (nodes) and connec-
tors (edges). Operators represent the job’s partition-parallel computation steps, and
connectors represent the distribution of data from one step to another step. Inter-
nally, an individual operator consists of one or more activities (internal sub-phases or
sub-steps). At the runtime, each operator is considered as a set of tasks (identical)
that are cells of the activity and that operate on individual partition of the data
flowing through the activity. Hyracks system architecture is showed in the figure 5.
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Figure 5: Hyracks System Architecture [Ref. 9]

7.2 Hyracks Data Treatment

In Hyracks, the data flows in the form of records between operators and connectors
that can have an arbitrary number of fields. Hyracks provides support for demon-
strating data-type specific operations such as hash functions and comparison. Each
type of field is described by providing an implementation of a descriptor interface
which allows Hyracks to perform serialization and deserialization. For example, the
basic types such as number and text, Hyracks library consists of pre-existing type
descriptors. Hyracks uses a record as a carrier of data that is generalization of the
(key, value pair) concept that is used in the MapReduce and Hadoop as well. The
advantage of this generalization is that operators do not have to artificially package or
re-package the multiple data objects into a single "key” or ”value” object. The use of
multiple fields for hashing or sorting becomes natural in the Hyracks model because
Hyracks operator library includes an external sort operator descriptor that can be
parameterized with the fields in order to use them for sorting along with comparison
function. The Type descriptors in Hyrack is similar to Hadoop but the important

12



difference is that Hyracks does not need the object instances that flow between opera-
tors to themselves and implement a specific interface. This make able the Hyracks to
directly process the data that is produced and/or consumed by the systems without
having knowledge about Hyracks system and its interface [9].

7.3 Hyracks MapReduce user Model

In MapReduce and Hadoop, data is initially partitioned across the various nodes of
a cluster and stored in a distributed file systems (DFS). Data is also represented as
(key or value pairs) and the desired computation is defined by using the two functions:

map (k1, vl) — list(k2, v2);
reduce (k2, list(v2)) — list(k3, v3).

A MapReduce computation starts with a map phase in which the Map functions
are applied in parallel on different partitions of input data. The key/value pairs output
by each map functions are then hash-partitioned on their key. For each partition, the
paris are sorted by their key and sent accross the cluster in shuffle phase. At each
receiving node, all of the received partitioned are merged in sorted order by their key.
All of the pair values sharing a given key are then passed to a single reduce call. The
output of each reduce function is finally written to a distributed file in the DFS. As
it is described in the Figure 6 below:
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Figure 6: Hyracks System Architecture [Ref. 14]
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7.4 Hyracks Task Execution Layer

Once a stage of a Hyracks job becomes ready to run then cluster controller (CC)
activates the stage on the set of Node Controllers (NC) that have been chosen to run
the stage and then waits until the stage completes or an NC failure is detected. There
are two important phases which are as follows:

1. Task Activation: When a stage becomes ready to run then Cluster Controller
sends messages to the Node Controller for participating in that stage’s execution
to perform task activation in three main steps:

a. Receiver Activation: The Cluster Controller initiates a Receiver acti-
vation request to every Node Controller that participates in the stage’s
execution. Each Node Controller on the reception of this request, creates
the Task objects which have been designated to run at Node Controller
(determined by scheduler). For each Task which accept the input from
other Tasks, then it creates an endpoint that has a unique network ad-
dress. The mapping from a Task object’s input to the endpoint address is
transmitted back to the Cluster Controller as response to this request.

b. Sender-Receiver Pairing: Once the Cluster Controller receives the Re-
ceiver Activation responses consisting local endpoint address from the
Node Controllers, then it combines all together in order to create a global
endpoint address map. This global map is broadcast to each Node Con-
troller so that the sender side of each Task object at that Node Controller
knows the network addresses of its consumer Tasks.

c. Connection Initiation: Once pairing has been completed on all Node
Controllers then Cluster Controller informs all of the Node Controllers that
the Tasks can be started.

2. Task Execution and Data Movement: The unit of data which is consumed
and produced by Hyracks tasks is called a Frame. A frame is a fixed-size con-
figurable chunk of contiguous bytes. A producer of data packs a frame with
a sequence of records in a serialized format and sends it to the consumer who
then interprets the records. Frames never contain partial record or a record
never split across frames. An ordinary approach to implement tasks that pro-
cess records is to deserialize then into Java objects and then process them. In
this way there are many objects can be created, resulting in more data copies
for creating the object representation and a burden comes on garbage collector
(later on) for reclaiming the space for those objects. To handle this kind of
problem Hyracks provides interfaces for comparing and hashing fields that can
be implemented to work off the binary data in a frame. Hyracks implementa-
tions includes these interfaces for the java types such as integer, float, string,
etc. Hyracks provides the Task implementor with the helper functions to per-
form basic tasks on the binary data such as to copy the specific fields, copy
the complete records and concatenate the records from source frame to target
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frames.

The runtime logic of a task is implemented as a push-based iteration which
receives a frame at a time from its inputs and pushes the result frames to its
consumers. The task runtime only implement the logic to process the stream of
the frames which belongs to one partition without relating to any repartition of
inputs or outputs which may require and any repartitioning can be achieved by
Connectors. At runtime the connector has two sides, the send-side and receive-
side. The send-side instances are co-located with the associated producer tasks,
and receive-see instances are co-located with the corresponding consuming tasks.
When a connector of a send-side instance receives a from its producing task,
it applies the redistribution logic to move records to the relevant receive-side
instances of the connector. Hyracks redistributes records based on their hash-
value because of hash-partitioning connector. The send-side instance of the
connector inspect each record in the received frame and compute the hash value
for it and also copy it to the target frame indicating the appropriate receive-side
instance. When the target frame is full, then the send-side instance sends the
frame to the receive-side instance. If the send-side and receive-side instances of
a connector are on different worker machines then sending a frame does write
it out to the network layer. The network layer in Hyracks is responsible for
ensuring that the frame gets to its destination[10].

7.5 Hyracks Fault Tolerance

A Hyracks system is particularly designed to run on a large number of commodity
computers and it must be capable for detecting and reacting against possible faults
that might occur during its regular operations. Hyracks is in better position to use
operator and connector properties to achieve the same degree of fault tolerance while
doing less work along the way. Hyracks job is less likely to hit by a failure during its
execution in first place.

8 Pregel Execution Engine

There are many practical problems that mainly concern with large graph. The large
scale of these graphs (billions of vertices and edges) poses challenges for their effi-
cient processing. In this case, there is a need for a computational model for this
task and that is Pregel computation model. In Pregel, programs are expressed as a
sequence of iteration, in which each of a vertex receives messages sent by the pre-
vious iteration, send messages to other vertices and modify its own state that of its
outgoing edges. The vertex-centric approach is flexible enough to express a broad
set of algorithms. The design purpose of this model is efficient processing, scalable
and fault-tolerant implementation on clusters of thousands of commodity computers,
and its synchronicity that makes reasoning about program easier. Distribution re-
lated details are hidden in system and kept behind an abstract API. The result is
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a framework for processing large-scale graphs which is expressive and easy to program.

The high-level organization of Pregel programs are represented by Bulk Syn-
chronous Parallel model [11]. Pregel computations contains a sequence of iterations
that are called supersteps. During a superstep the framework refers to a user-defined
function for each vertex, conceptually in parallel processing. The function specifies
the behavior of a single vertex V and a single superstep S. It can read messages that
sent to V' in superstep S — 1, it send messages to other vertices that will be received
at superstep S + 1, and modify the state of V and its outgoing edges. Messages are
sent along outgoing edges but a message can be sent to any vertex whose identifier is
unknown. The synchronicity of Pregel model makes it easier to reason about program
semantic when implementing algorithms, and it ensures that Pregel programs are in-
herently free of deadlocks and data races are common in asynchronous systems. The
performance of the Pregel programs should be competitive with that of asynchronous
systems given enough parallel slack [12, 13] because typical graph have much more
vertices than machines. One should be able to balance the machine loads so that the
the synchronization between supersteps does not add excessive latency rate.

8.1 The Computation Model

The input to a Pregel computation model is a directed graph in which each vertex
is uniquely identified by a string vertex identifier. Each vertex is associated with
a modifier, user defined value. The directed edges are associated with their source
vertices and each edge contains a modifier, user defined value and a target vertex
identifier. A typical Pregel computation model consists of input, when the graph
is initialized, that is followed by a sequence of supersteps separated by global syn-
chronization points until the algorithm terminates and finishes with output. Within
each superstep the vertices are computed in parallel, and each vertex is executing
the same user-defined function that describes the logic of given algorithm. Algorithm
termination based on each vertex voting to halt. In the superstep 0, every vertex
is in the active state and all active vertices participate in the computation of any
given superstep. A vertex deactives itself by voting to halt which mean that it has no
further work. The Pregel framework will not execute that vertex unless it receives a
message. If vertex reactivated by a message then a vertex must explicitly deactivate
itself again. The whole algorithm terminates when all the vertices are inactive at the
same time and there are no jobs in transit. As it is showed in the Figure 7 below:

8.2 Pregel System Architecture

The Pregel library divides a graph into partitions, each partition consisting of a set
of vertices and those vertices’ outgoing edges. The task of each vertex to a partition
depends only on the vertex ID, and it is possible to know which partition of a given
vertex belongs to even that vertex is owned by a different machine or even the vertex
does not exist yet. The default partitioning function is just hash(ID) function mod N,
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Figure 7: Pregel Computation Model [Ref. 13]

where N represents the number of partitions but users can replace it. The execution
of Pregel program contains several steps which are as follows [14]:

1.

Multiple copies of user program start execution on a cluster of machines and
these copies act as a master. It is not assigned to any portion of graph but
it is responsible for coordinating worker activity. The workers discover the
master’s location through cluster management system’s name service, and send
registration messages to the master.

The master discovers how many partitions the graph will have and assigns each
worker machine one or more partitions. Having more than one partitions per
worker establish the parallelism among the partitions and better load balancing,
and will improve the performance.

The master assigns a portion of the user’s input to each worker and that input
treated as a set of records, each of which consists of an arbitrary number of
vertices and edges.

The master gives instruction to each worker to perform superstep. The worker
loops through its active vertices while using one thread for each partition. The
worker calls computer( ) function for each active vertex, for delivering the
messages that were sent in the previous superstep. Messages are sent asyn-
chronously to enable overlapping of computation, communication and batching
but are delivered before the end of the superstep. When worker finish the job
it responds to the master and tells that how many vertices will be active in the
next superstep.

. After the computation process halts, the master may give the instructions to

each worker for saving its portion of the graph.

8.3 Fault Tolerance in Pregel

In Pregel, fault tolerance is achieved through checkpointing. At the beginning of
each superstep, the master gives instruction to workers to save that state of their
partitions for persistent storage including vertex values, edges values and incoming
messages, and the master separately saves the aggregator values. The failures of
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worker are detected by using a regular "ping” messages that the master issues to
different workers. If a worker does not receive a ping message after a specific time
period, the worker process terminates. And if the master does not get any response
back from a worker then master marks that worker process as failed. When one or
more workers get failed, then the current state of the partitions that assigned to these
workers is lost. The master reassigns the graph partitions to currently available set
of workers and they all reload their partition state from the most recent available
checkpoint at the beginning of a superstep S. The checkpoint could be the several
supersteps earlier than the latest S’ that is completed by any partition before the
failure.

9 Conclusion

There are number of Distributed Data Parallel Execution Engines, some of them em-
ployed similar data patterns but some of them have different capabilities and char-
acteristics in terms of task scheduling, data distribution, controlling the flow of data,
fault-tolerance and load balancing for better performance, etc. The implementations
directed to methods for a distributed data-parallel execution system (which comprises
an engine and a director which generates distributed jobs for the engine, it starts from
programs or queries and/or front end library that generates queries for the director in
the process of solving an optimization program) to split a computational problem into
a plurality of sub-problems using a branch-and-bound algorithm, designating a syn-
chronous stoppage time for a ”plurality of processors” (e.g. a cluster) for every round
of execution. Processing the search tree recursively using a branch-and-bound algo-
rithm in multiple rounds for determining if there is a need of further processing based
on the processing round state data, and then terminating the plurality of proces-
sors when processing is completed. Several implementations are directed to a library
which enables massively parallelism and for solving hard problems using distributed
execution of optimization algorithm by performing a complete search of the solution
space using branch-and-bound algorithm (i.e. by recursively splitting the original
problem into many simpler sub-problems). For several implementation, parallelism
and distribution can be handled automatically and can be invisible to the user, and
several implementations may be implemented on the top of distributed data-parallel
execution engines, for example, Map-Reduce, Hadoop, DryadLINQ, despite the use
of a constrained application model (with restricted communication patterns), that
implementations can scale linearly in performance perspectives with the number of
machines without much overhead [15].
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