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Clustering
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» set of n data points xi,

.., Xn

» with similarites s;; > 0 between all pairs of data points Xx;,

co X
@ represent in a similarity graph G = (V, E)

» each vertex v; represents a data point x;

» two vertices are connected, if s;; is larger than a certain threshold,
and the edge ist weighted by s; ;

FU Berlin, Spectral Clustering




Graph Notation
The

weighted adjacency matrix

is the symmetric matrix @ /

W:= (WU)i,jzl,...,n >0.

Freie Universitat |

The degree of a
vertex v; € V is definded as

n
di:= Z wijj and @
j=1 di = wjj + Wik + wj

the degree matrix as the diagonal matrix with di ... d, on the diagonal

dy

v

d>

FU Berlin, Spectral Clustering
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Graph Laplacian i&ﬁ_;)),?

graph Laplacian L:=D - W

Proposition (Properties of L)

1. For every f € R" we have

1z 2
2 iZ 1 ( I j)
J=1
2. L is symmetric and positiv semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is
the constant vector 1.

4. L has n non-negative, real-valued eigenvalues 0 =A1 < A2 <...Ap

FU Berlin, Spectral Clustering
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Proposition (Number of connected components and the spectrum
of L)

Let G be an undirected graph with non-negative weights. Then the
multiplicity k of the eigenvalue 0 of L equals the number of connected

components A1, ..., Ak in the graph. The eigenspace of 0 is spanned by
the indicator vectors 1a,, ..., 1a, of those components.
FU Berlin, Spectral Clustering «O0>» «F»r» «Z>» «E» E
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Proposition (Number of connected components and the spectrum
of L)

Let G be an undirected graph with non-negative weights. Then the
multiplicity k of the eigenvalue 0 of L equals the number of connected
components A1, ..., Ak in the graph. The eigenspace of 0 is spanned by
the indicator vectors 1a,, ..., 1a, of those components.

Theorem (Davis-Kahan theorem from matrix perturbation theory)

In a “nearly ideal case” where we still have distinct clusters, but the
between-cluster similarity is not exactly 0, we consider L to be a
perturbed version of the ideal case. As the eigenvectors in the ideal case
are piecewise constant on the connected components, the same will
approximately be true in the perturbed case.
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Spectral Clustering Algorithm

Input: Similarity matrix S € R™", number k of clusters to construct.

» Construct a similarity graph. Let W be its weighted adjacency matrix
and D the degree matrix.

» Compute the Laplacian L =D — W.
» Compute the first k eigenvectors us, ..., ux of L.

» Let U € R"*K be the matrix containing the vectors us, ..., ux as
columns.

» Fori=1,...,n,lety;e RX be the vector corresponding to the i-th row
of U.

» Cluster the points (y;)i=1
clusters Cy, ..., Ck.

Output: Clusters Az, ..., Ax with A= {j | yi € Ci}.

n in R with the k-means algorithm into

.....

FU Berlin, Spectral Clustering «O0>» «Fr «E>» «=>» £ A 6



Toy Example
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Histogram of the sample
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Toy Example
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Eigenvalues
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Spectral Clustering: Pros
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spectral clustering

» does not make strong assumptions on the form of the clusters

= can solve very general problems like intertwined spirals
adjacency matrix is sparse)

» can be implemented efficiently even for large data sets (as the

» no issues of getting stuck in local minima or restarting the algorithm
for several times with different initializations

FU Berlin, Spectral Clustering




Spectral Clustering: Cons

but
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» choosing a good similarity graph is not trivial

» spectral clustering can be quite unstable under different choices of
the parameters for the similarity graph

= Spectral clustering cannot serve as a “black box algorithm” which
automatically detects the correct clusters in any given data set. But it
applied with care.

can be considered as a powerful tool which can produce good results if

FU Berlin, Spectral Clustering
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End
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Thanks!
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