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Clustering

É set of n data points x1, . . . , xn

É with similarites si,j ≥ 0 between all pairs of data points xi, . . . , xj

m represent in a similarity graph G = (V,E)

É each vertex vi represents a data point xi

É two vertices are connected, if si,j is larger than a certain threshold,
and the edge ist weighted by si,j
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Graph Notation
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The
weighted adjacency matrix
is the symmetric matrix

W := (wij)i,j=1,...,n ≥ 0.

The degree of a
vertex vi ∈ V is definded as
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n
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the degree matrix as the diagonal matrix with d1 . . . dn on the diagonal
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Graph Laplacian

graph Laplacian L := D−W

Proposition (Properties of L)

1. For every f ∈ Rn we have

f tLf =
1

2

n
∑

i,j=1

wij
�

fi − fj
�2
.

2. L is symmetric and positiv semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is
the constant vector 1.

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . λn.
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Proposition (Number of connected components and the spectrum
of L)

Let G be an undirected graph with non-negative weights. Then the
multiplicity k of the eigenvalue 0 of L equals the number of connected
components A1, . . . , Ak in the graph. The eigenspace of 0 is spanned by
the indicator vectors 1A1 , . . . , 1Ak of those components.

Theorem (Davis-Kahan theorem from matrix perturbation theory)

In a “nearly ideal case” where we still have distinct clusters, but the
between-cluster similarity is not exactly 0, we consider L to be a
perturbed version of the ideal case. As the eigenvectors in the ideal case
are piecewise constant on the connected components, the same will
approximately be true in the perturbed case.
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Spectral Clustering Algorithm

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.
É Construct a similarity graph. Let W be its weighted adjacency matrix

and D the degree matrix.
É Compute the Laplacian L = D−W.
É Compute the first k eigenvectors u1, . . . , uk of L.
É Let U ∈ Rn×k be the matrix containing the vectors u1, . . . , uk as

columns.
É For i = 1, . . . , n, let yi ∈ Rk be the vector corresponding to the i-th row

of U.
É Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into

clusters C1, . . . , Ck.

Output: Clusters A1, . . . , Ak with Ai = {j | yi ∈ Ci}.
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Toy Example

Histogram of the sample
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Toy Example
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Spectral Clustering: Pros

spectral clustering
É does not make strong assumptions on the form of the clusters
⇒ can solve very general problems like intertwined spirals

É can be implemented efficiently even for large data sets (as the
adjacency matrix is sparse)

É no issues of getting stuck in local minima or restarting the algorithm
for several times with different initializations

,
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Spectral Clustering: Cons

but
É choosing a good similarity graph is not trivial
É spectral clustering can be quite unstable under different choices of

the parameters for the similarity graph

⇒ Spectral clustering cannot serve as a “black box algorithm” which
automatically detects the correct clusters in any given data set. But it
can be considered as a powerful tool which can produce good results if
applied with care.
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End

Thanks!

,
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