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Formulation of the PCCA-Problem
There are infinitely many transformations A of the eigenvectors resulting in
a soft membership matrix χ satisfying the positivity and partition of unity
constraints. Consequently, we have to determine the transformation A that
satisfies some optimality condition.
The starting point is the question whether it is possible to define some simpli-
fied dynamics on the coarse grained state space. Can we replace the original
transition matrix T by a smaller transition matrix Tc ∈ Rnc×nc that propagates
probability densities on the space of macrostates in a correct way? First of all,
we note that densities on the original state space pf ∈ Rn can be restricted to
a density pc ∈ Rnc on the coarse state space by the restriction operator:

pc(i) =

n∑
k=1

pf (k)χi(k)

pT
c = pT

f χ

pT
c = pT

f RT .

In particular, we can define a coarse-grained stationary density by

πT
c = πTRT .

Ideally, we would like to define Tc such that restriction and propagation com-
mute:

pT
f RTTc = pT

f TRT . (1)

We will see that generally, this is impossible, as the coarse graining process
leads to a loss of information that is irreversible. Let us understand this in
more detail: We start by computing the joint probability of being in macrostate
i and in macrostate j one step later:

C(i, j) =
∑
k,l

χi(k) [ΠT] (k, l)χj(l)

=
[
χT ΠTχ

]
(i, j).
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This matrix can be normalized to become a row-stochastic matrix via

Tc = D
−1
χT ΠTχ

= ITTRT .

D = diag(πc)

IT = D
−1
χT Π.

With these definitions, the matrix Tc consists of three steps: An interpola-
tion onto the fine states, propagation by the original transition matrix, and
restriction. We can observe that the interpolation of the fine density is al-
ways contained in the space of dominant left eigenvectors, as the columns of
χare contained in the space of right eigenvectors. Consequently, restriction and
propagation will only commute if the starting distribution is already contained
in the space of dominant left eigenvectors, but not in general.
In order to arrive at a better solution, let us make the following two observations:

TRT = TXA

= XΛA

= RTA−1ΛA.

RTTc = RT ITTRT

= RT ITRTA−1ΛA

= RT (RI)
T

A−1ΛA.

These two equalities show that there is an extra term (RI)T involved if we first
restrict and then propagate. Therefore, it was suggested to re-define Tc by

Tc = (RI)
−T

ITTRT . (2)

By construction, the commutation relation Eq. (1) is now satisfied. Moreover,
the new Tc can be demonstrated to maintain the major properties of the original
chain:

Lemma 1. The coarse-grained propagator Tc defined by Eq. (2) possesses
the same eigenvalues as the dominant eigenvalues of T. Moreover, it has the
stationary distribution πc.

Proof. The statement about eigenvalues follows from

Tc = (RI)
−T

(RI)
T

A−1ΛA

= A−1ΛA.

Similarly,

πT
c Tc = πTRTA−1ΛA

= πTXΛA

= πTTXA

= πTRT

= πT
c .
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In summary, the matrix Tc inherits most of the original structure, but it is not
a real transition matrix anymore. The inverse (RI)−T can introduce negative
elements. Nevertheless, Tc allows us to formulate a useful objective function.
The objective function is usually chosen in such a way that the factor RI is as
close to the identity matrix as possible, because that means that Tc is close to
a true transition matrix. Using the fact that tr(RI) ≤ nc, which can be shown
via the definition of RI, one frequently chooses

F (A,X, π) = nc − tr(RI)

in order to enforce this. Indeed, it can be shown that this objective function as
well as the constraints can be expressed entirely in terms of A. For more details
on the algorithm, as well as different choice of the objective function, see the
papers [1, 4].

Transition Path Theory (TPT)
The final step in our analysis is based on the following questions: Say we have
determined two interesting subsets A,B ⊂ S of the state space, s.t. A∩B = ∅.
These sets could have been obtained as metastable sets by PCCA+ or they
might correspond to biologically interesting arrangements of a molecule. Can
we determine the average time it takes to transition from A to B, and can we
even determine a typical or probable pathway for this transition? For a detailed
presentation of the theory, see the references [2, 3].

Hitting Probabilities and Committors
The starting point for these questions is a quantity we have already encountered,
the hitting time of a set A, and the corresponding hitting probability:

HA = min {k ≥ 0 : Xk ∈ A} ,
hA(i) = Pi(HA(i) <∞).

The vector hA of hitting probabilities solves the following problem:

Lemma 2. The vector hA is the minimal solution of the problem

hA(i) =

{
1, i ∈ A∑n

j=1 TijhA(j), otherwise.

Proof. The statement for i ∈ A is clear. The second statement follows by
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hA(i) = Pi(HA <∞)

=

n∑
j=1

Pi(HA <∞, X1 = j)

=

n∑
j=1

Pi(HA <∞|X1 = j)Pi(X1 = j)

=

n∑
j=1

TijhA(j).

We do not show the minimality of hA here, the proof is rather technical and
can be found in the old lecture notes.

The hitting probabilities allow us to characterize the central quantity for TPT,
the committor probability:

Definition 3. The forward committor of sets A,B is defined as the probability
to hit set B next rather than A:

q+i = Pi(HB < HA).

Lemma 4. The vector of forward committors satisfies the system of equations:

q+i =


1, i ∈ B
0, i ∈ A∑n

j=1 Tijq
+
j , otherwise.

Proof. All we have to do is define the so-called A-absorbing process:

T̃ij =

{
δij , i ∈ A
Tij otherwise.

The committor probability equals the hitting probability of set B under the A-
absorbing process. The statement follows directly from the previous lemma.

Definition 5. The backward committor q−i of sets A, B is defined as the prob-
ability to come from A rather than from B.

Lemma 6. For reversible systems, the backward committor can be computed by

q−i =


0, i ∈ B
1, i ∈ A∑n

j=1 Tijq
−
j , otherwise.
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Proof. The backward committor can be computed in the same way as the for-
ward committor using the time-reversed propagator T̂ij = P(X0 = j|X1 = i).
But for detailed balance, we have

T̂ij =
P(X0 = j, X1 = i)

πi

=
πjTji

πi
= Tij .

The assertion then follows from the previous lemma.

Fluxes and Transition Rates
The forward and backward committor are sufficient to calculate transition rates
between the sets A and B. First, we can define the probability current
between states i, j:

fAB
ij =

{
πiq
−
i Tijq

+
j , i 6= j

0, otherwise.

The probability current yields the average number of reactive trajectories
(those going from A to B, without entering A before reaching B) that transition
from i to j per time unit. Moreover, we can compute the effective probability
current from i to j by

f+ij = max
(
fAB
ij − fAB

ji , 0
)
.

Now, we can determine the average total number of trajectories going from A
to B per time unit via

FAB =
∑
i∈A

∑
j∈S

fAB
ij

=
∑
i∈A

∑
j∈S

f+ij .

Finally, the transition rate is the average fraction of reactive trajectories by
the total number of trajectories that are going forward from state A:

κAB =
FAB∑
j∈S πjq

−
j

.

The inverse of the transition rate,

τAB = κ−1AB

is called the mean first-passage-time.
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Dominant Pathways
Finally, we briefly sketch how a characteristic reaction pathway can be iden-
tified from the effective probability currents. To this end, we make use of
graph theory again, and define a directed graph G where the nodes are given
by the states and the edges are weighted by the effective fluxes. To make
this work, we have to assume that all effective currents are distinct. Let
w = (i0, i1, . . . , iK) be a simple reaction pathway, i.e. all ij are different and
i0 ∈ A, iK ∈ B, i1, . . . , iK−1 ∈ (A∪B)c. The capacity or min-current of the
pathway is the minimum probability current

c(w) = min
(i,j)∈w

f+ij ,

and the edge (i, j) where that minimum occurs is called the bottleneck of the
pathway. The “best” pathway is then defined as the one which maximizes the
min-current, let us call its bottleneck the global bottleneck. Usually, there will
be more than one pathway that uses the global bottleneck. Let us call all of these
pathways dominant reaction pathways. In order to remove the ambiguity
and find a single best pathway, we can proceed as follows:

1. Determine the global bottleneck (b1, b2).

2. Determine all nodes and edges of dominant reaction pathways and reduce
G to these nodes and edges.

3. The bottleneck divides the graph G into two disjoint parts of nodes L (“all
nodes to the left of b1”) and R (“all nodes to the right of b2”).

4. Recursively find the best pathways in L with B replaced by {b1} and in
R with A replaced by {b2}.
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