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In this lecture, it is our goal to understand the dynamical behaviour of a fi-
nite Markov chain based on its eigenvalues. To this end, we have to briefly
discuss one more property of Markov chains which ensures that the eigenvalue
decomposition has the shape that we would like it to have: Aperiodicity.

The Period of a Chain

Definition 1. Let ¢ be a state of a finite Markov chain T. Consider the set of
all possible return times

T@) = {k>1:T}>0}.
Then we define the period of state i as the greatest common divisor of 7 (4):
p) = gedT():
If p(i) > 1, the state is called periodic, and aperiodic otherwise.

Lemma 2. If T is irreducible, then the period is the same for all states, i.e
p(i) = p for alli. For this case, we simply call the chain periodic or aperiodic.

Proof. Can be found in [3, Ch. 1.3]. O

Example 3. Consider two examples:
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Clearly, T, is periodic with period 2, while T is aperiodic.

From our perspective, periodic chains do not make sense, by a simple argument.
We will always discretize time- and space-continuous dynamical systems. There
should be at least one state ¢ which has positive return probability T;; > 0.
This, together with irreducibility, implies aperiodicity.



Eigenvalue Decomposition

The first statement we need is a version of the very general and famous Perron-
Frobenius-Theorem:

Theorem 4. Let T be the transition matriz of an irreducible and aperiodic
Markov chain. Then:

(i) There is a non-degenerate largest eigenvalue \y = 1, with strictly positive
left and right eigenvectors associated to it.

(i1) Every other eigenvalue \ satisfies |\ < 1.

Proof. Can be found, for instance, in [5, Ch.1,4]. O

Reversible transition matrices allow for a very powerful decomposition in terms
of their eigenvalues.

Theorem 5. Let T be a reversible and irreducible transition matriz with sta-
tionary vector w. Then, there is a set of right eigenvectors rp,, m =1,...,n of
T, corresponding to real eigenvalues A1, Aa, ..., Ay, that forms an orthonormal
basis of R™ w.r.t. the weighted inner product

n

<V,W>7r == Z’L}iwiﬂia

=1
i.e.
’I‘rm = Amrma
<rm; rm’>7r = 6m,m’ .

The right eigenvectors r,, can be converted into left eigenvectors l,, by pointwise
multiplication with ©, i.e. 1, = Ilr,,. Moreover, T can be decomposed as

T(i,7) = Z)‘mrm(i)ﬂ(j)rm(j)

[
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Proof. Consider the matrix
S = H1/2TH_1/2,
S(i,j) = w(@)"*x(j)" T, ).

This matrix is symmetric because of the detailed balance condition. Therefore,
we can find n eigenvectors v,,, m = 1,...,n of S, corresponding to real eigen-
values A, which are orthonormal w.r.t. the standard Euclidean inner product.
It follows that r,, := II-'/2v,, is an eigenvector of T with the same eigenvalue:
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The statement about left eigenvectors follows similarly, and it can be checked
that (v, Tm/)x = Om,m because of the orthogonality of the v,,. The final
statement follows from the fact that T(i,7) is the i-th entry of the application
of T to the unit vector e; and the orthonormal basis property of the ry,:

T(.j) = [Tej] (i)

T ( (ej,rm>ﬂrm>] (1)
m=1

n
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Consequently, the type of transition matrices we are going to focus on from now
are irreducible, aperiodic, and reversible. We can now easily show the following
convergence result:

Lemma 6. Let T be the transition matrix of an irreducible, aperiodic and re-
versible Markov chain. Then, for any initial distribution pg, we have:

lim pr = .
k—o0

Proof. The eigenvalue decomposition of T yields:
pi = pT"
n
Z )\fnrmlzr;‘|
m=1

= Z )‘icn <p0’ rmﬂ%
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= 7w An(po Tl (1)
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The statement follows if we go to the limit and the fact that A\, < 1 for all
m > 2. O



With this decomposition, we are able to understand the dynamical behaviour
of the chain in detail. The decomposition tells us that the time evolution of any
probability density is a superposition of relaxation processes. Moreover, there
is a finite time we need to wait until the system has entirely forgotten about
its initial state. If we run the chain for much longer than the second implied
timescale

1

ty = ——r
? log(A2)

all terms in Eq. (1) have vanished except the first. But we can do even better
than this. Consider the example shown in Figure 1: Here, we study a discrete
Markov chain on n = 100 states, where the states correspond to fine bins of
an interval of the real line. The transition matrix (panel B) is set up to mimic
the stochastic dynamics of a particle in the potential energy landscape shown
in panel A. This particle will remain for long times in one of the four minima
of the energy landscape, and it will only rarely transition between them. This
is reflected in the transition probabilities and the stationary vector, also shown
in panel A. Looking at the eigenvalues in panel D, we see that there are three
eigenvalues A2, A3 A4, which are close to the Perron eigenvalue A\; = 1, whereas
all remaining eigenvalues are clearly separated from 1. Moreover, the first three
non-constant eigenvectors are nearly constant across the main minima, but they
exchange their signs in between them: The second eigenvector ro exchanges
its sign across the largest barrier in the center, the next two are doing the
same across the smaller barriers on the left and on the right. In this way,
the eigenvectors corresponding to eigenvalues close to 1 seem to encode the slow
structural transitions in the chain, and thus the essential dynamical information.

This is not a coincidence. Long-lived groups of states (or macrostates or clus-
ters) that only allow for rare transitions to other states are called metastable.
The existence of metastable macrostates is connected to eigenvalues close to
the Perron eigenvalue A1, because their longevity implies slow convergence in
Eq. (1). Moreover, metastable macrostates are related to eigenvectors that are
nearly constant on the macrostates, as we will see below. This is exactly the
pattern we are looking for when we try to model the dynamics of biological
molecules, as metastable clusters are a typical feature of these systems. Fre-
quently, they are associated to biological function or malfunction of a molecule.

Eigenvectors of Nearly Uncoupled Markov Chains

Let us give a more precise meaning to the observed sign pattern of the eigenvec-
tors. First, consider an uncoupled Markov chain, which can be decomposed
into n. < n separated clusters. The transition matrix can be assumed to possess
a block-diagonal structure
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Figure 1: Illustration of eigenvalue decomposition for a metastable system.
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Due to the existence of the irreducible sub-chains, Ty has an n.-fold eigenvalue
A =1, and the space of right eigenvectors with eigenvalue 1 is n.-dimensional. It
follows that the right eigenvectors must be constant on the individual clusters.
Denote the matrix of the first n, rlght eigenvectors by X. Introducing the

characteristic vectors x; € R, j =1,...,n.:
(4) 1 if ¢is in cluster j
() = ,
X3 0 otherwise

and assembling them into a matrix xy € R™*"<  we find that there must be a
regular transformation matrix A € R™*"_ g.t.

x = XA.
We can now formulate the observation made above in a precise manner:

Theorem 7. Let T be the transition matrixz of a reversible, irreducible and
aperiodic Markov chain which is nearly uncoupled, i.e. T is of nearly block-
diagonal form:

" FEip -+ Eqp,
Eyy To -+ Eap,

T — . . . )
Boq T,.

where ||Eyj;|| < € for all i,j. Then, apart from the unique Perron eigenvalue
A1 = 1 and the constant eigenvector ry corresponding to it, there are n. — 1
eigenvalues close to 1. The matriz X of the first n. eigenvectors satisfies

x = XA+0(e)
for a reqular transformation A € R™e*"e,

Proof. Can be found in [1, Thm 3.1]. O

Coarse Graining by PCCA -+

We know by now that the dominant eigenvectors of a metastable Markov chain
can be expected to look as described above. How can we automatically de-
tect the metastable states and thus coarse grain the chain down to its relevant
features? Examination of the sign-structure of the eigenvectors turned out to



be difficult in practice for two reasons: Firstly, the number of possible sign-
structures grows exponentially. Moreover, it is unclear how to treat transition
states, i.e. states like those on top of the barriers of the potential in Figure 1.
It does not make sense to assign these states to either of the metastable states.
Consequently, the idea brought forward by [2, 4] under the name of Perron
Cluster Cluster Analysis (PCCA+) is to compute a regular transforma-
tion A and a membership matrix y where the strict assignment of each state i
to a macrostate j is replaced by a soft assignment. Now, a microstate i belongs
to each macrostate j with a certain probability x,(¢). Thus, x is replaced by a
matrix satisfying the conditions:

x;(i) > 0(Positivity)

Ne
Z x;(i) = 1(Partition of Unity).
j=1
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