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Definitions
Definition 1. A probability distribution π ∈ Rn is a stationary distribution
of T when

πTT = πT (1)
holds. Applying Eq. (1) m times leads to πTTm = πT . A stationary distribu-
tion is a left eigenvector of the transition matrix with eigenvalue one.
We investigate the conditions needed to ensure existence and uniqueness of sta-
tionary distributions. In this lecture, we are going to show that irreducibility is
sufficient for the existence and uniqueness of a stationary distribution. There-
fore, for the rest of this lecture, let T be the transition matrix of an irreducible
Markov chain. We are going to show that:

Theorem 2. Let T be the transition matrix of an irreducible Markov chain.
Then there exists a unique stationary distribution π such that πTT = π and
πi > 0 for all states i.

Hitting Times and Existence
As a preparation, we need two technical lemmas and a definition:

Lemma 3. Let X be a non-negative integer-valued random variable. Then

E(X) =

∞∑
k=0

P(X > k)

Proof. We have that
∞∑
k=0

P(X > k) =

∞∑
k=0

∑
l>k

P(X = l)

=

∞∑
k=0

kP(X = k).
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Definition 4. For any state i, we define the first hitting time of that state
by

τi = min {k ≥ 1 : Xk = i} .

We can now use Lemma 3 to show that the expected hitting time of any state
is finite in an irreducible chain.

Lemma 5. For any states i, j of an irreducible chain, we have that

Ei(τj) < ∞.

Proof. The idea of the proof is to use irreducibility in order to show that the
probability of the hitting time being large decays exponentially. Irreducibility
implies that for any states i, j there is a positive integer rij and a positive
number εij s.t.

Trij (i, j) = εij .

We define r := max rij and ε := min εij . It follows that, whatever the value of
Xk, the probability to hit state j between steps k and k+ r is at least ε (why?).
Consequently, we have that

Pi(τj > mr) ≤ Pi(Xk 6= j, k = (m− 1)r + 1, . . . ,mr)Pi(τj > (m− 1)r).

≤ (1− ε)Pi(τj > (m− 1)r).

Repeated application of this argument shows that

Px(τj > mr) ≤ (1− ε)m.

Now, we can use Lemma 3 to conclude:

Ei(τj) =

∞∑
k=0

Pi(τj > k)

≤ r

∞∑
m=0

Pi(τj > mr)

≤ r

∞∑
m=0

(1− ε)m

< ∞.

Now, we can pick a candidate distribution for π and show that it is stationary.
The intuition is that as soon as the chain returns to some state i for the first
time, the chain basically restarts, as its memory is forgotten by the Markov
property. Therefore, the expected relative number of visits to any state before
returning to i should be the stationary distribution.
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Definition 6. For a Markov chain starting in i, we define the following random
variables:

Rji = Number of visits to jbefore returning to i

Lemma 7. Fix a state i. Define the distribution

π(j) =
Ei(Rji )
Ei(τi)

. (2)

Then π is a stationary distribution of the Markov chain T.

Proof. We note first of all that
∑
j π(j) = Ei(τi), hence π is finite by Lemma 5

and the denominator in Eq. (2) is just the normalization. We will show that

π̃(j) = Ei(Rji )

is a stationary vector of the Markov chain. The first step is to arrive at a more
useful expression for π̃: On the set of trajectories generated by T, define random
varibles

Imj =

{
1 if Xm = j and τi > m

0 otherwise.

We conclude that Rji =
∑∞
m=0 I

m
j and

π̃(j) =

∞∑
m=0

Ei(Imj )

=

∞∑
m=0

Pi(Xm = j, τi > m).

Now, we can multiply our candidate distribution to the left of T:

∑
j

π̃(j)Tjk =
∑
j

∞∑
m=0

Pi(Xm = j, τi > m)Tjk

=
∑
j

∞∑
m=0

Pi(Xm = j, Xm+1 = k, τi ≥ m+ 1)

=

∞∑
m=0

Pi(Xm+1 = k, τi ≥ m+ 1).

=

∞∑
m=1

Pi(Xm = k, τi ≥ m).

The second line is not straightforward. It is a consequence of the Markov prop-
erty (in which way?). Finally, the last expression is indeed equal to π̃(k):
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∞∑
m=1

P(Xm = k, τi ≥ m) = π̃(k)− Pi(X0 = k, τi > 0) +

∞∑
m=1

Pi(Xm = k, τi = m)

= π̃(k)− Pi(X0 = k) + Pi(Xτi = k)

= π̃(k).

The last equality is due to the cancellation of the two extra terms. If k 6= i,
both terms vanish, and if k = i, both terms equal one.

Uniqueness
Lemma 8. The space of right eigenvectors of T with eigenvalue one is one-
dimensional and it is spanned by the constant vector v, vi ≡ 1.

Proof. By a direct calculation, we see that v is a right eigenvector of T with
eigenvalue 1:

n∑
j=1

Tijvj =

n∑
j=1

Tij

= 1

= vi.

Next, suppose there is non-constant right eigenvector w with eigenvalue 1. It
follows that there is one i s.t. wi =M is maximal among all wj . Now, suppose
that there is one k such that Tik = ε > 0 and wk < M . The eigenvalue equation
then implies that:

M = vi

= Tikvk +
∑
j 6=k

Tijvj

< εM + (1− ε)M
= M.

This argument implies that wis constant on all states that are accessible from
state i. By irreducibility, w is constant on all states.

Lemma 9. The stationary vector πof an irreducible Markov chain T is unique.

Proof. The multiplicity of right and left eigenspaces is always identical, hence,
the space of left eigenvectors with eigenvalue one is one-dimensional by Lemma
8. Clearly, there can only be one left eigenvector such that its elements sum up
to one.
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Reversible Transition Matrices
From now on, we will be interested in reversible transition matrices:

Definition 10. A transition matrix T with stationary distribution π is called
reversible with respect to π if it satisifes the detailed balance condition

πiTij = πjTji, ∀i, j. (3)
ΠT = TTΠ,

where Π = diag(π).Reversibility states that the joint probability of seeing the
system first in state i and then in state j one step later is the same as vice
versa. We will mostly focus our attention on reversible transition matrices, as
in the biological application, Eq. (3) generally holds even on the microscopic
(continuous) level, and should therefore be transferred to the discretized level.
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