Discrete Markov Chains

April 23, 2015

1 Lecture 1

Definitions and General Properties We are discussing a stochastic process

J}k,k:O,l,...,

where each x; is a random variable mapping into a finite state space

S = {Si,...,Sn}.

We will also denote the states by 1, j, k, ... in what follows. The discrete time
step k can be abstract or can refer to some physical time 7. Such a process is
called a Markov chain if the following property holds:

Definition 1. A stochastic process as above satisfies the Markov property
if for all £ > 1 and states So, ..., Sk:

Pz = Sklek—1 = Sk—1,...,20 =S50) = P(xp = Sklzp—1 = Sk-1),

i.e. the distribution of the chain knowing the entire history of the process is
identical to the distribution knowing only the last step. In short, we will write

P(eg|ep—1,...,20) = P(zglrg—1)-

Throughout the lecture, we will only be interested in time-homogeneous
chains. In time-homogeneous Markov chains, there is no dependence on time,
and the transition probabilities depend on the states exclusively. In this case
we can define a transition probability matrix, or short, transition matrix:

T c Rnxn . T’lJ — ]P)(xk :J I Tp—1 = 'L)

whose element (4, j) yields the conditional transition probability that the Markov
chain will be in state j at time k given that it has been in state ¢ at time k — 1.

Lemma 2. The transition matriz T has the following properties:



Ti; > 0Vi, j

n

> Ty =1Vi
j=1

It follows that each row ¢ of T is a probability distribution of the state found
at the next time-step conditioned on :

Tiw = (T, ..., Tin)-

Generating realizations / trajectories Let us assume that in general the
first state xp is drawn from an initial distribution pg. Then, a realization of
length NV + 1 can be generated as follows:

1. Draw zq from the initial distribution pg

2. Fork =0,...,N—1: draw zj11 from the discrete distribution [Ty, 1, ..., T, n)

Ensemble evolution The probability to find the chain at state 7 at time k,
Dk,i, can be computed by considering all possible realizations from the previous
step k — 1:

Pki = Pr—11T1i+ oo +Dr—1,0Thi

n
E Pr—1,51j:
j=1

Define the probability vector px = (Pk.1, .-, Pk.n)” , this is compactly written as:
Pg = Pg—lT-

Applying this equation k times starting from pg yields the Chapman-Kolmogorow
equation:

Lemma 3. If the chain is started from an initial distribution po, then the
distribution at time step k is given by

p; =py T".

where TF is the kth power of matriz T. Thus, the powers of T are still stochastic
matrices, and serve as the propagators for longer timesteps:



Connectedness of a chain

Definition 4. State j is accessible from state ¢ (written ¢ — j), if and only if
there exists a finite sequence of states

=10, 11y «+sy In—1, tn =]

such that T, ;,,, > 0 for all k& € {0,1,...,n — 1}. Thus, i — j if there is a
nonzero probability that the Markov chain reaches j after a finite number of
steps when starting from 3.

If both, i — j and j — 4, then we say that ¢ and j communicate (written
i j).

A communication class C C S is a set of states whose members communicate,
ie. 14> jforall,j € C,, and no state in C' communicates with any state not
in C.

A finite Markov chain (or equivalently, its transition matrix T) is irreducible,
if it has a single communicating class C' = S.

Example 5. The transition matrix

05 05 0 0O 0 O
05 05 0 0O 0 O
0
0

o O O O
oS O OO

has the communication classes {1, 2}, {3,4}, {5}, {6}. The communication class
{3,4} is connected to {5}, and {5} is connected to {6}, so {3,4} and {5} are
not closed. The only closed communication classes are {1,2} and {6}. T is
reducible (not irreducible). On the other hand, the transition matrix

= o oo
SO O =
o o= O
o= o o

has the single closed communication class S = {1,2,3,4}. T is thus irreducible.

Determination of Communication Classes In order to design an efficient
algorithm to compute the communication classes, it is useful to view the tran-
sition matrix as a graph. We define the connectivity graph D = (S, A). D is
a directed graph, consisting of a set of nodes and arrows connecting these
nodes. Here, D has the node set S, i.e. each node represents a state of the
Markov chain. The arrow set A consists of all arrows that connect state i to j
if and only if T3; > 0 and ¢ # j. The connectivity graphs of the two transition
matrices above are:



We first introduce the depth-first search algorithm as an approach to
traverse the nodes of a graph by following its arrows:

Algorithm 1 DFS(D, v, E): Pseudocode for depth-first search in a digraph
D, staring from node v
Input: Digraph D, starting node v, List of explored nodes F.
Output: Updated E
Label node v as explored.
For all outgoing arrows a = (v, w):
If node w is unexplored then update E by DFS(D, w, E)
Append v to list of found nodes E.

Depth-first search starts traversing the graph at some specified starting node
v and then returns the set of nodes E that are accessible from wv.

Kosaraju’s algorithm then uses depth-first search and exploits the fact
that the transpose graph of D (the same graph with the direction of every
arrow reversed) has exactly the same strongly connected components as D:

Algorithm 2 Kosaraju(D): Pseudocode of Kosaraju’s strong component algo-
rithm
Input: Digraph D
Output: Set of communication classes, C
Create empty list V = ().
While V' does not contain all nodes:
Choose an arbitrary node v not in V.
Update V by DFS (D, v, V)
Let DT bet the transpose graph of D (directions of all arcs reversed)
While V' is nonempty
Let v be the last node in V'
Compute C by DFS (DT, v,C) with C initially empty.
C' is the communication class containing v. Add C to C.
Remove all nodes in C from the graph D and the list V.

Indeed, C found in the second step of the second loop is a communication
class: As we are traversing the transposed graph, we find all nodes that can
access v, i.e. v/ — v for all v’ € C. Suppose that one v’ € C was not accessible



from v. Then we would not have found v in the last call of DFS starting from
v. It follows that we would have found v’ in an earlier run of DFS, but this
implies that we would found v as well.

Consider the first example shown above. If we start with node 1, the DFS
algorithm would first identify nodes {1, 2}, if we continue with node 3, then it
would subsequently find {3,4,5,6}. After the first stage, Vwould be given by:

V=1(2,1,6,5,4,3)

We now transpose the graph:

jogo
jogojogoyo

And call DFS starting from the last node in V', which is v = 3. We find the
set {3,4}. These nodes are removed from V and D”. V is now:

V =(2,1,6,5)

In the subsequent iterations we find the sets {5}, {6}, and finally {1,2}. The
algorithm ends with the communication classes:

C= {{17 2}7 {37 4}7 {5}7 {6}}



