Discrete Markov Chains

April 23, 2015

1 Lecture 1

Definitions and General Properties We are discussing a stochastic process

$$
x_{k}, k=0,1, \ldots,
$$

where each x_{k} is a random variable mapping into a finite state space

$$
S=\left\{S_{1}, \ldots, S_{n}\right\} .
$$

We will also denote the states by i, j, k, \ldots in what follows. The discrete time step k can be abstract or can refer to some physical time τ. Such a process is called a Markov chain if the following property holds:

Definition 1. A stochastic process as above satisfies the Markov property if for all $k \geq 1$ and states S_{0}, \ldots, S_{k} :

$$
\mathbb{P}\left(x_{k}=S_{k} \mid x_{k-1}=S_{k-1}, \ldots, x_{0}=S_{0}\right)=\mathbb{P}\left(x_{k}=S_{k} \mid x_{k-1}=S_{k-1}\right),
$$

i.e. the distribution of the chain knowing the entire history of the process is identical to the distribution knowing only the last step. In short, we will write

$$
\mathbb{P}\left(x_{k} \mid x_{k-1}, \ldots, x_{0}\right)=\mathbb{P}\left(x_{k} \mid x_{k-1}\right) .
$$

Throughout the lecture, we will only be interested in time-homogeneous chains. In time-homogeneous Markov chains, there is no dependence on time, and the transition probabilities depend on the states exclusively. In this case we can define a transition probability matrix, or short, transition matrix:

$$
\mathbf{T} \in \mathbb{R}^{n \times n} \quad: \quad T_{i j}=\mathbb{P}\left(x_{k}=j \mid x_{k-1}=i\right)
$$

whose element (i, j) yields the conditional transition probability that the Markov chain will be in state j at time k given that it has been in state i at time $k-1$.

Lemma 2. The transition matrix \mathbf{T} has the following properties:

$$
\begin{aligned}
T_{i j} & \geq 0 \forall i, j \\
\sum_{j=1}^{n} T_{i j} & =1 \forall i
\end{aligned}
$$

It follows that each row i of \mathbf{T} is a probability distribution of the state found at the next time-step conditioned on i :

$$
\mathbf{T}_{i *}=\left(T_{i 1}, \ldots, T_{i n}\right)
$$

Generating realizations / trajectories Let us assume that in general the first state x_{0} is drawn from an initial distribution \mathbf{p}_{0}. Then, a realization of length $N+1$ can be generated as follows:

1. Draw x_{0} from the initial distribution \mathbf{p}_{0}
2. For $k=0, \ldots, N-1$: draw x_{k+1} from the discrete distribution $\left[T_{x_{k}, 1}, \ldots, T_{x_{k}, n}\right.$]

Ensemble evolution The probability to find the chain at state i at time k, $p_{k, i}$, can be computed by considering all possible realizations from the previous step $k-1$:

$$
\begin{aligned}
p_{k, i} & =p_{k-1,1} T_{1 i}+\ldots+p_{k-1, n} T_{n i} \\
& =\sum_{j=1}^{n} p_{k-1, j} T_{j i}
\end{aligned}
$$

Define the probability vector $\mathbf{p}_{k}=\left(p_{k, 1}, \ldots, p_{k, n}\right)^{T}$, this is compactly written as:

$$
\mathbf{p}_{k}^{T}=\mathbf{p}_{k-1}^{T} \mathbf{T}
$$

Applying this equation k times starting from \mathbf{p}_{0} yields the Chapman-Kolmogorow equation:

Lemma 3. If the chain is started from an initial distribution \mathbf{p}_{0}, then the distribution at time step k is given by

$$
\mathbf{p}_{k}^{T}=\mathbf{p}_{0}^{T} \mathbf{T}^{k}
$$

where \mathbf{T}^{k} is the kth power of matrix \mathbf{T}. Thus, the powers of \mathbf{T} are still stochastic matrices, and serve as the propagators for longer timesteps:

$$
\left(\mathbf{T}^{k}\right)_{i j}=\mathbb{P}\left(x_{k}=j \mid x_{0}=i\right)
$$

Connectedness of a chain

Definition 4. State j is accessible from state i (written $i \rightarrow j$), if and only if there exists a finite sequence of states

$$
i=i_{0}, i_{1}, \ldots, i_{n-1}, i_{n}=j
$$

such that $T_{i_{k}, i_{k+1}}>0$ for all $k \in\{0,1, \ldots, n-1\}$. Thus, $i \rightarrow j$ if there is a nonzero probability that the Markov chain reaches j after a finite number of steps when starting from i.
If both, $i \rightarrow j$ and $j \rightarrow i$, then we say that i and j communicate (written $i \leftrightarrow j)$.
A communication class $C \subseteq S$ is a set of states whose members communicate, i.e. $i \leftrightarrow j$ for all $i, j \in C$, , and no state in C communicates with any state not in C.
A finite Markov chain (or equivalently, its transition matrix \mathbf{T}) is irreducible, if it has a single communicating class $C=S$.

Example 5. The transition matrix

$$
\mathbf{T}=\left[\begin{array}{cccccc}
0.5 & 0.5 & 0 & 0 & 0 & 0 \\
0.5 & 0.5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.4 & 0.4 & 0.2 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

has the communication classes $\{1,2\},\{3,4\},\{5\},\{6\}$. The communication class $\{3,4\}$ is connected to $\{5\}$, and $\{5\}$ is connected to $\{6\}$, so $\{3,4\}$ and $\{5\}$ are not closed. The only closed communication classes are $\{1,2\}$ and $\{6\}$. \mathbf{T} is reducible (not irreducible). On the other hand, the transition matrix

$$
\mathbf{T}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

has the single closed communication class $S=\{1,2,3,4\} . \mathbf{T}$ is thus irreducible.

Determination of Communication Classes In order to design an efficient algorithm to compute the communication classes, it is useful to view the transition matrix as a graph. We define the connectivity graph $D=(S, A) . D$ is a directed graph, consisting of a set of nodes and arrows connecting these nodes. Here, D has the node set S, i.e. each node represents a state of the Markov chain. The arrow set A consists of all arrows that connect state i to j if and only if $T_{i j}>0$ and $i \neq j$. The connectivity graphs of the two transition matrices above are:

We first introduce the depth-first search algorithm as an approach to traverse the nodes of a graph by following its arrows:

```
Algorithm \(1 \mathbf{D F S}(D, v, E)\) : Pseudocode for depth-first search in a digraph
\(D\), staring from node \(v\)
Input: Digraph \(D\), starting node \(v\), List of explored nodes \(E\).
Output: Updated \(E\)
Label node \(v\) as explored.
For all outgoing arrows \(a=(v, w)\) :
    If node \(w\) is unexplored then update \(E\) by \(\operatorname{DFS}(D, w, E)\)
Append \(v\) to list of found nodes \(E\).
```

Depth-first search starts traversing the graph at some specified starting node v and then returns the set of nodes E that are accessible from v.

Kosaraju's algorithm then uses depth-first search and exploits the fact that the transpose graph of D (the same graph with the direction of every arrow reversed) has exactly the same strongly connected components as D :

```
Algorithm 2 Kosaraju( \(D\) ): Pseudocode of Kosaraju's strong component algo-
rithm
Input: Digraph \(D\)
Output: Set of communication classes, \(\mathcal{C}\)
Create empty list \(V=()\).
While \(V\) does not contain all nodes:
    Choose an arbitrary node \(v\) not in \(V\).
    Update \(V\) by DFS ( \(D, v, V\) )
Let \(D^{T}\) bet the transpose graph of \(D\) (directions of all arcs reversed)
While \(V\) is nonempty
    Let \(v\) be the last node in \(V\)
    Compute C by DFS ( \(D^{T}, v, C\) ) with \(C\) initially empty.
    \(C\) is the communication class containing \(v\). Add \(C\) to \(\mathcal{C}\).
    Remove all nodes in \(C\) from the graph \(D\) and the list \(V\).
```

Indeed, C found in the second step of the second loop is a communication class: As we are traversing the transposed graph, we find all nodes that can access v, i.e. $v^{\prime} \rightarrow v$ for all $v^{\prime} \in C$. Suppose that one $v^{\prime} \in C$ was not accessible
from v. Then we would not have found v^{\prime} in the last call of DFS starting from v. It follows that we would have found v^{\prime} in an earlier run of DFS, but this implies that we would found v as well.

Consider the first example shown above. If we start with node 1, the DFS algorithm would first identify nodes $\{1,2\}$, if we continue with node 3 , then it would subsequently find $\{3,4,5,6\}$. After the first stage, V would be given by:

$$
V=(2,1,6,5,4,3)
$$

We now transpose the graph:

And call DFS starting from the last node in V, which is $v=3$. We find the set $\{3,4\}$. These nodes are removed from V and $D^{T} . V$ is now:

$$
V=(2,1,6,5)
$$

In the subsequent iterations we find the sets $\{5\},\{6\}$, and finally $\{1,2\}$. The algorithm ends with the communication classes:

$$
\mathcal{C}=\{\{1,2\},\{3,4\},\{5\},\{6\}\}
$$

