

Computerorientierte Mathematik I

Rationale Zahlen, Fest-/Gleitkommazahlen

Wiederholung: Ganze Zahlen

Problem:

Ist n > m, so hat x + n = m keine Lösung $x \in \mathbb{N}$.

Ausweg:

Erweitere N um x = (m, n), wir schreiben m - n.

Neues Problem:

x + 2 = 1 und x + 1 = 0 hätten verschiedene Lösungen.

Neuer Ausweg:

Aquivalenzklassen! (Siehe Analysis I, Lineare Algebra I)

$$..., -2, -1, 0, 1, 2, ...$$

Wiederholung: Ganze Zahlen

Satz. Jede Zifferndarstellung von \mathbb{N} induziert eine Zifferndarstellung von \mathbb{Z} .

$$z_k \cdots z_{0 \ q} = \sum_{i=0}^k z_i q^i, \quad z_i \in \mathcal{Z} = \{0, \dots, q-1\}$$

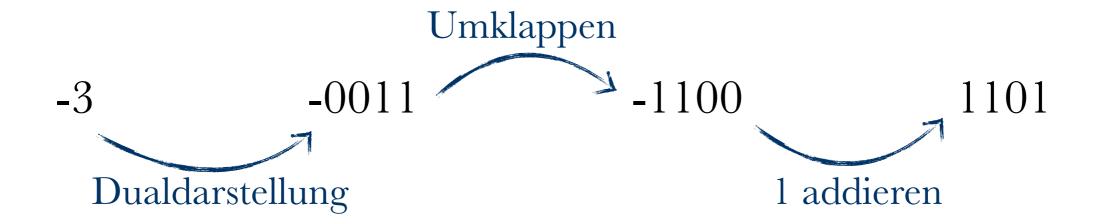
$$-z_k \cdots z_0 = -\sum_{i=0}^k z_i q^i, \quad z_i \in \mathcal{Z} = \{0, \dots, q-1\}$$
Vorzeichenbit

Wiederholung: Zweierkomplement

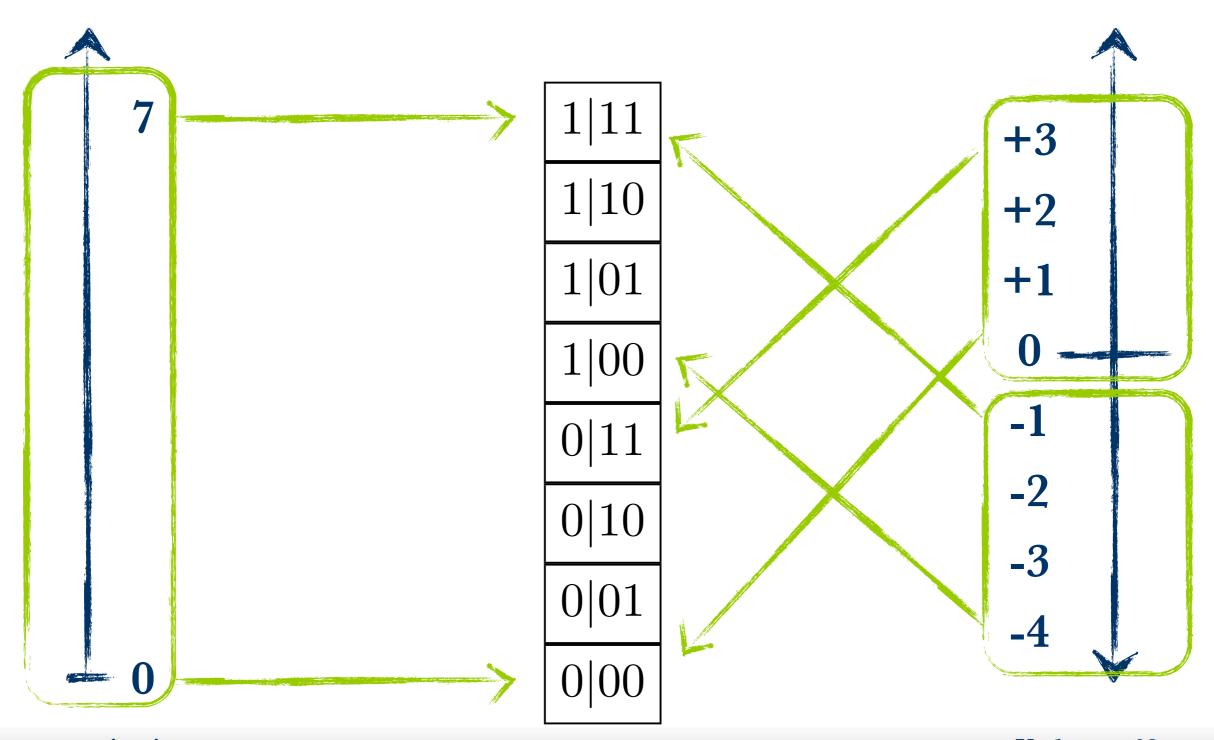
Kochrezept: Das Zweierkomplement von n < 0 erhält man durch

Dualdarstellung, Umklappen, 1 addieren

Beispiel: Zahlenbreite N=4, n = -3



Wiederholung: Zweierkomplement



Rationale Zahlen (anschaulich: Tortenstücke)

$$\mathbb{Q} = \left\{ \left. \frac{a}{b} \, \middle| \, a, b \in \mathbb{Z}, \, b \neq 0 \right. \right\}$$

Rechenregeln:

$$\frac{a}{b} + \frac{a'}{b'} = \frac{a \cdot b' + a' \cdot b}{b \cdot b'}$$

$$\frac{a}{b} \cdot \frac{a'}{b'} = \frac{a \cdot a'}{b \cdot b'}$$

Rationale Zahlen (konstruktiv)

Problem:

 $x \cdot b = a$ hat i.a. keine Lösung $x \in \mathbb{Z}$.

Ausweg:

Erweitere \mathbb{Z} um x = (a, b), wir schreiben $\frac{a}{b}$.

Achtung:

Falls b=0 zulässig, dann folgt $\frac{a'}{b'}=\frac{0\cdot a'}{0\cdot b'}=\frac{0}{0}$

Konstruktion von Q:

Abschluss von Z unter Division!

Äquivalenzklassen von Paaren $(a, b), a, b \in \mathbb{Z}, b \neq 0$

Darstellung rationaler Zahlen

Satz. Jede Zifferndarstellung von \mathbb{N} induziert eine Zifferndarstellung von \mathbb{Q} .

Ziffernmenge: $\mathcal{Z} \cup \{-\} \cup \{/\}$.

Folgerung. Q ist abzählbar!

q-adische Brüche

Definition. Die Darstellung

$$z_n \cdots z_0, z_{-1} \cdots z_{-m \ q} = \sum_{i=-m}^n z_i \ q^i,$$
 $mit \ n, m, q \in \mathbb{N}, \ q > 1 \ und \ z_i \in \{0, \dots, q-1\},$

heißt q-adischer Bruch.

Dezimalbrüche

$$z_n \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^n z_i \, 10^i, \quad z_i \in \{0, \dots, 9\}$$

- Addition & Multiplikation wie bei Dezimalzahlen!
- Komma beachten!

$$\sum_{i=1}^{m} z_{-i} \, 10^{-i} = \frac{\sum_{i=1}^{m} z_{-i} \, 10^{m-i}}{10^{m}}$$

Dezimalbrüche

Beispiel. Der Bruch $\frac{1}{3}$ hat die Darstellung

$$\frac{1}{3} = 0,333333333\dots$$

Form gleicht q-adischer Darstellung, benötigt aber $m = \infty$ Nachkommastellen.

Satz. Jeder q-adische Bruch ist eine rationale Zahl, nicht umgekehrt.

Periodische Dezimalbrüche

Satz. Für q > 1 hat die geometrische Reihe den Grenzwert

$$\sum_{i=0}^{\infty} q^{-i} = \lim_{m \to \infty} \sum_{i=0}^{m} q^{-i} = \lim_{m \to \infty} \frac{1 - q^{-m-1}}{1 - q^{-1}} = \frac{1}{1 - q^{-1}}.$$

Beispiel. Betrachte 0, 123123 . . . (Periodenlänge 3):

$$0,123123... = 0,123 \cdot \left(10^{0} + 10^{-3} + 10^{-6} + \cdots\right)$$
$$= 0,123 \cdot \sum_{i=0}^{\infty} 10^{-3i}$$
$$= 0,123 \cdot \frac{1}{1-10^{-3}} = \frac{123}{999}.$$

Periodische Dezimalbrüche

$$0, 123123 \cdots =: 0, \overline{123}$$

Wir verbieten $\overline{0}$, denn

$$0, \overline{9} = 0, 9 \sum_{i=0}^{\infty} 10^{-i} = 0, 9 \frac{1}{1 - 10^{-1}} = \frac{0, 9}{0, 9} = 1, \overline{0}$$

Satz. Jede rationale Zahl ist ein periodischer Dezimalbruch und umgekehrt.

Dualbrüche

$$z_n \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^{n} z_i \, 2^i, \quad z_i \in \{0, 1\}$$

Beispiel. Dezimalbruch o Dualbruch

$$1,375 = 1 \cdot 2^{0} + 0,375$$

$$= 2^{0} + 0 \cdot 2^{-1} + 0,375$$

$$= 2^{0} + 1 \cdot 2^{-2} + 0,125$$

$$= 2^{0} + 2^{-2} + 2^{-3}$$

$$= 1,011_{2}$$

Dualbrüche

Beispiel. Dezimalbruch o Dualbruch

$$0, 1_{10} = 0, 0\overline{0011}_2$$

Satz. Jeder Dualbruch ist ein Dezimalbruch, nicht umgekehrt!

Proof. \rightarrow Übung!

Praktische Realisierung

Darstellung als Paar von **integer-**Zahlen:

- Länge muss variabel sein!
- Aufwand an Rechenoperationen (Kürzen) a priori nicht bekannt!

Keine standardisierte Hardwareunterstützung!

- Spezialanwendungen (Computergraphik)
- Symbolisches Rechnen (Maple, Mathematica, ...)

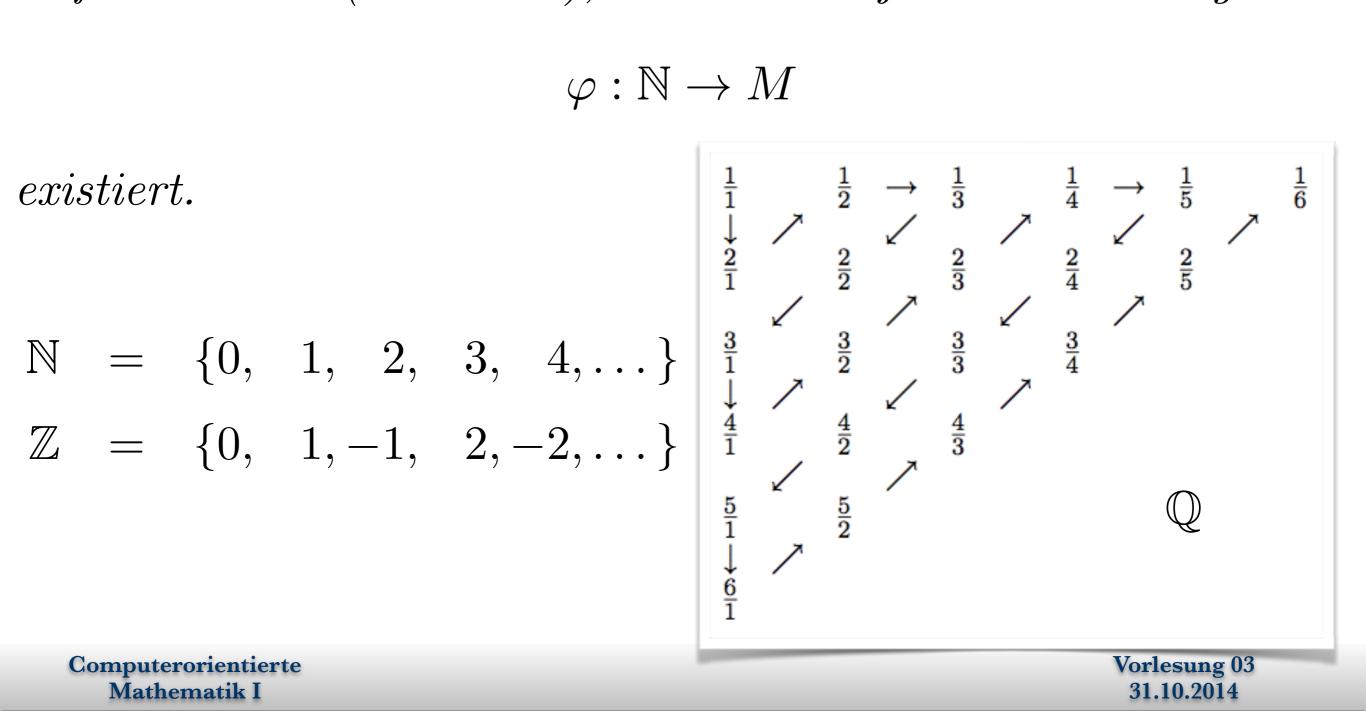
Abzählbarkeit und Zifferndarstellung

Definition. Eine Menge M mit unendlich vielen Elementen heißt abzählbar (unendlich), wenn eine bijektive Abbildung

$$\varphi: \mathbb{N} \to M$$

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \dots \}$$



Reelle Zahlen

Darstellung: unendliche Dezimalbrüche

$$\mathbb{R} = \{ z_n \cdots z_0, z_{-1} z_{-2} \cdots | z_i = 0, \dots, 9 \}$$

Satz. \mathbb{R} ist nicht abzählbar!

Folgerung. Es gibt keine Zifferndarstellung von $\mathbb{R}!$

Folgerung. Numerisches Rechnen mit reellen Zahlen ist nicht möglich!

Absoluter Fehler

Definition. Es sei \tilde{x} eine Approximation von $x \in \mathbb{R}$. Dann heißt der Abstand

$$|x-\tilde{x}|$$

absoluter Fehler.

Beispiel. $\tilde{x} = 3$ approximiert die Zahl $x = \pi$ bis auf den absoluten Fehler

$$|\pi - 3| < 2 \cdot 10^{-1}$$
.

Relativer Fehler

Definition. Es sei \tilde{x} eine Approximation von $x \in \mathbb{R}$, $x \neq 0$. Dann heißt das Verhältnis

$$\frac{|x - \tilde{x}|}{|x|}$$

relativer Fehler.

Beispiel.

$$\frac{|4-0|}{|4|} = 10^0 \quad aber \quad \frac{|1000-996|}{|1000|} = 4 \cdot 10^{-3}$$

Festkommazahlen (q-adische Brüche)

Definition. Seien $n, m \in \mathbb{N}$ fest gewählt. Dann ist

$$z_{n-1}\cdots z_0, z_{-1}\cdots z_{-m} q = \sum_{i=-m}^{n-1} z_i q^i,$$

 $mit \ z_i \in \{0, \dots, q-1\}, \ eine \ Festkommazahl \ mit \ \ell = n + m \ Stellen.$

Festkommazahlen

Beispiel. Betrachte eine Festkommadarstellung mit n=3 Vorkommastellen und m=1 Nachkommastellen.

x=0,123 lässt sich nicht exakt darstellen! Wir runden $\tilde{x}=0,1$.

relativer Fehler:
$$\frac{|0,123-0,1|}{|0,123|} \approx 0,2$$

x = 123, 0 lässt sich exakt darstellen! $\tilde{x} = 123, 0$.

relativer Fehler:
$$\frac{|123, 0 - 123, 0|}{|123, 0|} = 0$$

Nicht optimal!

Gleitkommazahlen

Definition. Jede in der Form

$$\tilde{x} = (-1)^s \cdot a \cdot q^e$$

 $mit\ Vorzeichenbit\ s \in \{0,1\},\ Exponent\ e \in \mathbb{Z}\ und\ Mantisse\ a=0$ oder

$$a = 0, a_1 \cdots a_\ell = \sum_{i=1}^{\ell} a_i q^{-i}, \quad a_i \in \{0, \dots, q-1\}, a_1 \neq 0$$

darstellbare Zahl \tilde{x} heißt Gleitkommazahl mit Mantissenlänge $\ell \in \mathbb{N}$, $\ell \geq 1$. Die Darstellung heißt normalisierte Gleitkommadarstellung. Die Menge aller dieser Zahlen heißt $\mathbb{G}(q,\ell)$.

Gleitkommadarstellungen

Beispiel. Sei q = 10 und $\ell = 4$.

x	$\mid ilde{x} \mid$	$\left \begin{array}{c} x- ilde{x} \\ x \end{array} \right $
0,123	$0,1230 \cdot 10^0$	0
123	$0,1230 \cdot 10^3$	0
123,456	$0,1235\cdot 10^3$	$\approx 0,00036$
0,00123456	$0,1235\cdot 10^{-2}$	$\approx 0,00036$