

Computerorientierte Mathematik I

Das Team

Vorlesung: Frank Noé

Christoph Wehmeyer

Assistent: Feliks Nüske

Tutoren: Katharina Colditz

Anna Dittus

Felix Mann

Christopher Pütz

Voraussetzungen

- Anmeldung im Campusmanagement www.fu-berlin.de/sites/campusmanagement/
- Anmeldung im KVV kvv.imp.fu-berlin.de
- ZeDaT- & Fachbereichsaccount JK27/121a (Silberlaube)
 Rechnerbetrieb (Informatik)

Scheinkriterien

- Bestehen der Klausur/Nachklausur
- Aktive Teilnahme am Übungsbetrieb:
 50% der Theorie- (TP) und
 50% der Programmierpunkte (PP)
- Regelmäßige Teilnahme am Übungsbetrieb

Note = Klausurergebnis

Klausur

Klausur: 13.02.2015 (12-14 Uhr)

Nachklausur: 10.04.2015 (12-14 Uhr)

- Zugelassen sind Hörer_innen & Wiederholer_innen
- Teilnahme an der Nachklausur zur Notenverbesserung möglich

Übungsbetrieb (ab 3. Vorlesungswoche)

Ausgabe: freitags (Homepage & Vorlesung)

Abgabe: jeweils freitags darauf bis 16 Uhr

ins Fach des zuständigen Tutors

(Arnimallee 3, 1. OG)

Abgabe von Programmieraufgaben per E-Mail an den Tutor!

Zusammenarbeit (2-3 Studierende) ist erwünscht!

Übungsbetrieb (ab 3. Vorlesungswoche)

	MO	DI	MI	DO	FR
08-10			SR 007/008 (A6)	SR 032 (A6)	
10-12	SR 007/008 (A6)		SR 031 (A6)	SR 119 (A3)	
12-14				SR 031 (A6)	
14-16	SR E.31 (A7)				
16-18				SR 032 (A6)	

Anmeldung im KVV!

Matlab-Tutorium (2. Vorlesungswoche)

	МО	DI	MI	DO	FR
08-10	Anna, Felix	Anna, Felix	Anna, Felix		
10-12	Anna, Christopher	Felix, Katharina	Anna, Katharina		
12-14	Christopher, Katharina		Christopher, Katharina		
14-16	Christopher, Katharina		Felix, Katharina		
16-18	Anna, Christopher		Christopher, Felix		

R 017 (Arnimallee 6) Anmeldung im KVV!

Homepage

Link to: CMB Home

Home

Lectures

Group Seminar

Resources

Group Software and SVN

Available Hardware

3rd Party Software

Group Skills

Wilkommen beim Wiki der Vorlesung Computerorientierte Mathematik I WS 2014/2015

- ↓ News
- ↓ Allgemeines
- ↓ Termine
- ↓ Inhalt
- ↓ Matlab-Tutorien (einmalig)
- ↓ Übungsbetrieb
 - ↓ Übungsgruppen (regelmäßig)
 - ↓ Übungszettel
- ↓ Scheinkriterien

↓ Material zur Vorlesung

www.mi.fu-berlin.de/w/CompMolBio/ComaI

December and Make

New

Workshop

Markov Models(MSM)

Member Contact

2.10.2014: 1. Vorlesung am Freitag, 17.10.2014. Sie erhalten neben einer allgemeinen Einführung wichtige Informationen zum Übungsbetrieb. Bitte nehmen Sie diesen Termin wahr.

2.10.2014: Bitte registrieren Sie sich nicht nur im Campus Management sondern auch im KVV des Fachbereichs, da diese Plattform für die Verwaltung der Übungsgruppen genutzt wird.

2.10.2014: Um die PC Pools am Fachbereich nutzen zu k\u00f6nnen ben\u00f6tigen Sie neben dem ZEDAT Account einen Fachbereichsaccount. Bitte beantragen Sie diese/n zeitnah.

Allgemeines

Vorlesungen: Frank Noé, Christoph Wehmeyer

Übungen: Katharina Colditz u. a.

Sprache: Deutsch SWS: 2+ 2; LP/Credits: 5

Zielgruppe: Studienanfänger_innen im Fach Mathematik, Lehramtskandidat_inn_en und Studierende der Bioinformatik, sowie

Numerisches Rechnen

- Oft keine analytische Lösung
- Schnell, dank moderner Computer
- Simulation physikalischer Systeme
 - Wettervorhersage
 - Dynamik von Molekülen
 - Materialwissenschaften

Aber: Rechnen Computer richtig?

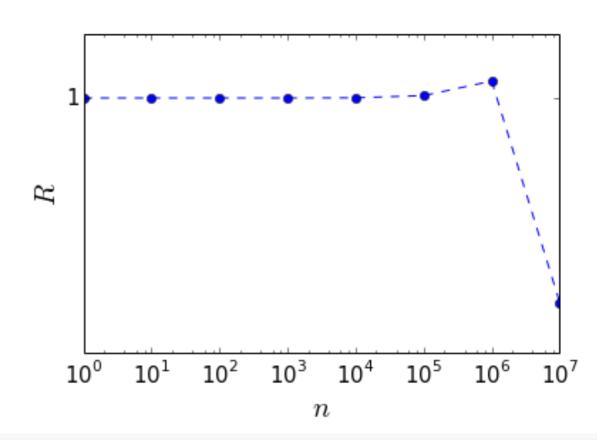
Multiplikation vs Addition

$$n \cdot 0.1 \stackrel{?}{=} \sum_{k=1}^{n} 0.1$$

S=0; for k=1:1:n; S=S+0.1; end

M=n*0.1

R=S/M



Darstellung natürlicher Zahlen

Natürliche Zahlen (anschaulich)

0, 1, 2, 3, ...

- bekannt aus Schule/Alltag
- beginnen mit 0 oder 1
- zum Abzählen geeignet
- keine negativen Zahlen (Schulden)
- keine Brüche (Tortenstücke)

Natürliche Zahlen (axiomatisch)

Definition:

Ausgezeichnetes Element $0 \in \mathbb{N}$

Abbildung $S: \mathbb{N} \to \mathbb{N}$, mit

(S1) S ist injektiv, d.h. $S(n) \neq S(m)$ falls $n \neq m$.

$$(S2) \ 0 \notin S(\mathbb{N}) = \{S(n) \mid n \in \mathbb{N}\}.$$

(S3) Ist $M \subset \mathbb{N}$ und gilt $0 \in M$, $S(M) \subset M$ so gilt $M = \mathbb{N}$.

Rechnen mit natürlichen Zahlen

Formale Definition der Addition möglich!

Achtung: Jede Zahl braucht einen eindeutigen Namen.

Problem: Unendlich viele Zahlen.

Lösung: Konstruiere unendliche viele Namen aus

endlich vielen Symbolen.

Zifferndarstellung

$$z_1 z_2 z_3 \dots z_k$$
, $z_i \in \mathcal{Z}$, $i = 1, \dots, k$

Satz:

Ist \mathcal{Z} eine endliche Menge von Ziffern und

$$\mathcal{D}(\mathcal{Z}) = \{z_1 \dots z_k \mid k \in \mathbb{N}, z_i \in \mathcal{Z}, i = 1, \dots, k\}$$

die Menge aller Ziffernketten, so existiert eine bijektive Abbildung

$$\varphi: \mathbb{N} \to \mathcal{D}\left(\mathcal{Z}\right)$$

Ziffernsysteme

Definition:

Die Ziffernmenge \mathcal{Z} und die Zuordnung φ erzeugen ein Ziffernsystem zur Darstellung von \mathbb{N} .

Definition:

Eine Menge M, für die ein bijektives $\varphi : \mathbb{N} \to M$ existiert, heißt abzählbar.

Beispiel: Unärsystem

$$\mathcal{Z} = \{|\}$$

$$\mathcal{D}(\mathcal{Z}) = \{|, ||, ||, ||\}$$

$$\varphi(1) = |$$

$$\varphi(n+1) = \varphi(n)|$$

Potenzzerlegung zur Basis q

Satz:

Sei $q \in \mathbb{N}$, q > 1 fest gewählt.

Dann existiert für jedes $n \in \mathbb{N}$ eine Zerlegung

$$n = \sum_{i=0}^{k} r_i q^i$$

mit eindeutig bestimmten Koeffizienten

$$r_i \in \{0, \ldots, q-1\} \subset \mathbb{N}.$$

Positionssystem zur Basis q

Definition:

Sei \mathcal{Z} eine Ziffernmenge mit q Elementen. Wir definieren eine bijektive Abbildung $\varphi : \{0, \ldots, q-1\} \to \mathcal{Z}$ durch $i \mapsto \varphi(i) = z_i$.

Dann erweitern wir $\varphi : \mathbb{N} \to \mathcal{D}(\mathcal{Z})$ durch

$$n \mapsto \varphi(n) = z_{r_k} z_{r_{k-1}} \dots z_{r_0}$$
, mit

$$n = \sum_{i=0}^{k} r_i q^i \text{ und } r_i \in \{0, \dots, q-1\}.$$

"q-adische Darstellung"

Beispiel

$$123 = 1 \cdot 100 + 23$$
$$= 1 \cdot 100 + 2 \cdot 10 + 3$$

$$123 = 1 \cdot 64 + 59$$

$$= 1 \cdot 64 + 7 \cdot 8 + 3$$

$$= 173 \quad \text{(Oktalsystem, } q = 8\text{)}$$

Positionssystem zur Basis q

$$z_k z_{k-1} \dots z_{0q} = \sum_{i=0}^k r_i q^i$$

Dezimalsystem

$$\mathcal{Z} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Hexadezimalsystem

$$\mathcal{Z} = \{0, \dots, 9, A, B, C, D, E, F\}$$

• Dualsystem

$$\mathcal{Z} = \{0, 1\}$$

Übungsausgabe

Heute: 0. Übungsblatt als PDF

Matlab-Tutorium (keine Abgabe)

24.10.: 1. Übungsblatt (Abgabe am 31.10.)

Die Übungen finden erstmals in der dritten Woche statt!